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Waste collection is an important part of waste management that involves different issues, including envi-
ronmental, economic, and social, among others. Waste collection optimization can reduce the waste col-
lection budget and environmental emissions by reducing the collection route distance. This paper
presents a modified Backtracking Search Algorithm (BSA) in capacitated vehicle routing problem
(CVRP) models with the smart bin concept to find the best optimized waste collection route solutions.
The objective function minimizes the sum of the waste collection route distances. The study introduces
the concept of the threshold waste level (TWL) of waste bins to reduce the number of bins to be emptied
by finding an optimal range, thus minimizing the distance. A scheduling model is also introduced to com-
pare the feasibility of the proposed model with that of the conventional collection system in terms of tra-
vel distance, collected waste, fuel consumption, fuel cost, efficiency and CO2 emission. The optimal TWL
was found to be between 70% and 75% of the fill level of waste collection nodes and had the maximum
tightness value for different problem cases. The obtained results for four days show a 36.80% distance
reduction for 91.40% of the total waste collection, which eventually increases the average waste collec-
tion efficiency by 36.78% and reduces the fuel consumption, fuel cost and CO2 emission by 50%, 47.77%
and 44.68%, respectively. Thus, the proposed optimization model can be considered a viable tool for opti-
mizing waste collection routes to reduce economic costs and environmental impacts.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Solid waste management (SWM) is always a prime concern in
every country. Solid waste collection (SWC) is one of the most chal-
lenging steps among all the operational steps of SWM. Municipal
solid waste (MSW) is a major by-product of the urban lifestyle,
which is rising even faster than urbanization (Hannan et al.,
2015), and its quantity has been significantly increased due to
the rapid population growth. Thus, the growth of population and
urbanization, combined with growing environmental concerns,
has created a critical situation such that the management or
policy-makers must look for different sustainable means of effec-
tively collecting and disposing of the mounting waste (Poser and
Awad, 2006; Xue et al., 2015). It has also made SWC more delicate
in terms of traffic congestion and fuel consumption and its subse-
quent cost, environmental pollution (greenhouse gas emission),
etc. Moreover, a huge amount of the budget is spent on this sector.
The concern regarding its efficiency has increased even more with
the emerging modern era. In consequence of this concern, many
municipalities (especially in industrialized nations) are forced to
assess the cost-effectiveness and environmental impacts of their
SWM systems, particularly waste collection route designs
(Nuortio et al., 2006). Therefore, a number of studies have been
conducted to reduce this expenditure. Economopoulou et al.
(2013) described a software system to cut the annual capital
investment and annual operating cost of MSW transportation,
treatment and final disposal operation and achieve significant eco-
nomic savings. Hence, with the proper study of SWC efficiency,
cost in this sector can be cut by avoiding permanent adverse effects
on the environment.

Management of solid waste is a multi-tasking process. It
involves generation, source-separation, storage, collection, transfer
and transport, processing and recovery, and disposal (Rada et al.,
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2010). Among all the steps of waste management, waste collection
(from waste generation to the waste management centre, i.e., the
SWC route) is the most important issue (Kanchanabhan et al.,
2010). The typical process of waste collection involves vehicles
that start from the depot; they travel in fixed routes to collect
waste by visiting all locations, which consumes a large amount
of the budget. While collecting waste, vehicles keep their engines
running, even during the loading-unloading of waste bins, which
results in huge consumption of fuel and greater emissions. Up to
70% of the total budget for SWM may be used for SWC, mainly
for fuel consumption (Tavares et al., 2009); that has a substantial
hazardous effect on the environment due to the consequent pollu-
tion emissions (Zsigraiova et al., 2013). This pollution has tremen-
dous impacts, including an increasing pattern of CO2 accumulation
of approximately 2 ppm per year (Budzianowski, 2012, 2016).
Therefore, by improving SWC, not only the total budget of SWM
but also adverse effects on the environment can be improved
tremendously.

Waste collection is a complex procedure for any municipality,
especially in cities of developing countries, in terms of logistics,
fuel and labour costs and air pollutant emissions (Malakahmad
et al., 2014). In fact, SWM is a challenge for every municipality
regardless of its economic condition. Malaysia is a Southeast Asian
country with an upper middle income level. The Malaysian govern-
ment has a very large budget for solid waste management. The
budget of the Taman Beringin Transfer Station (TBTS), a solid waste
transfer station, is approximately RM 30,000,000 per year for only
simple operational costs (Budhiarta et al., 2012). Still, the level of
waste management is unsatisfactory and dangerous
(Periathamby et al., 2009). The local authorities must spend more
than 50% of their operational budget for waste management, 50%
of which is actually spent on the waste collection process (Manaf
et al., 2009). Therefore, by improving the waste collection process,
waste management can be made efficient and cost effective.

Previously, and even currently in most areas, solid waste collec-
tion is carried out without analysing demand, and the construction
of the routes for collection is left to the drivers. Hence, it takes
longer to collect garbage, and due to the absence of a proper mon-
itoring system, many regions are commonly left out. This improper
waste collection and transportation system makes the entire SWM
process inefficient. The MSW collection cost is expressed as cost
per tonne (Faccio et al., 2011); hence, it is a waste of resources to
travel to empty a bin that is not full yet. If it is possible to identify
the bins that are not full yet and can thus be emptied later, the
waste collection route can be compressed, making it cost effective.
Therefore, the need for a properly monitored waste collection sys-
tem is growing with time, and studies concerned with finding
proper solid waste collection and transportation are being
conducted.

Researchers from all over the world have already conducted a
number of studies on monitoring different steps of the waste col-
lection process by applying modern technologies. For example,
Mamun et al. (2015) developed a smart bin that monitors its waste
status. A waste collection route can be made more efficient if it is
designed to only empty the full bins based on the real-time waste
statuses of smart bins. Again, the routing problem is computation-
ally quite challenging, and in the case of large systems, optimal
(exact) methods cannot be applied. Hence, comparatively new
algorithmic approaches (e.g., heuristic and meta-heuristic) are
applied in those cases to yield the most optimized result (Laporte
et al., 2000). Thus, a proper algorithm is needed for the decision
regarding an optimized waste collection route instead of collecting
garbage in a pre-defined path. This route optimization method can
conserve travel distance and minimize the number of vehicles,
which reduces labour costs, fuel costs, operation time, greenhouse
gas GHG emissions, etc.
To make solid waste collection more cost-effective, different
optimization approaches have been applied, e.g., to reduce travel
distance, time, cost, emissions, etc. In many research studies, the
waste collection problem of an area is designed as a vehicle routing
problem (VRP), which yields an effective collection route (Bautista
et al., 2008). There are a number of constraints considered in these
studies. The most common constraint is the vehicle capacity con-
straint. The solid waste collection route is modelled in such a
way that the collected waste does not exceed the capacity of the
vehicle. When a capacity constraint is considered in a VRP, it is
named the capacitated vehicle routing problem (CVRP) (Dantzig
and Ramser, 1959). In many studies, waste collection has been
modelled in CVRP approaches with different algorithms and soft-
ware (Kuo et al., 2012; Liu and He, 2012a; McLeod and Cherrett,
2008). There are various other constraints, e.g., time, regulatory,
political, etc., that are taken into account in different studies. How-
ever, limited experiments have been conducted with smart bin
technologies for waste collection and route optimization.

Along with other optimization problems, newly developed algo-
rithms are also applied in solid waste collection optimization stud-
ies. Initially, conventional mathematical programming algorithms,
such as linear programming (Kulcar, 1996) and mixed integer pro-
gramming (Tung and Pinnoi, 2000; Badran and El-Haggar, 2006;
Agha, 2006), have been applied for solid waste collection optimiza-
tion. To overcome the limitations of these methods (that they are
less effective for large-scale problems requiring more components
to be considered for optimization, which makes the solution
approach complicated), the heuristic approach has become popular
because it can overcome the problem of huge computational time.
Some popular and effective heuristic approaches are the nearest
neighbourhood search algorithm (Faccio et al., 2011) and the
greedy algorithm (Bautista and Pereira, 2006; Sahoo et al., 2005).
However, these techniques lack precision and have longer execu-
tion times for the collection of solid waste (Viotti et al., 2003).
The meta-heuristic approach is the most popular approach in
recent years, yielding sufficiently good solutions for collection
optimization even when there is incomplete information or limited
computational capacity. This technique incorporates elements of
biological evolution, the nervous system, intelligent problem-
solving, etc. A few meta-heuristics approaches are popular, such
as ant colony optimization (ACO) (Islam and Rahman, 2012; Liu
and He, 2012a, 2012b), genetic algorithms (GAs) (Karadimas
et al., 2007; Viotti et al., 2003), and particle swarm optimization
(PSO) (Son, 2014; Kuo et al., 2012).

There is a number of software packages used in waste collection
optimization. ArcGIS is a very commonly used software for solid
waste collection optimization. Using this software, the real-time
road conditions (traffic, blockage, etc.) can be optimized, and a
route can be designed accordingly (Malakahmad et al., 2014;
Shastri et al., 2014; Tavares et al., 2009; Khan and Samadder,
2016). With the development of technology, different technical
devices, such as different sensors and systems (Mamun et al.,
2015; Rovetta et al., 2009), RFID (Radio Frequency Identification)
for solid waste bin and truck monitoring (Hannan et al., 2011),
advanced image processing for bin waste-level detection, (Arebey
et al., 2012) and vehicular ad-hoc networks (VANET) (Narendra
et al., 2014), are becoming popular to make waste collection more
efficient by making the communication easier between different
collection components. Application of these technologies in waste
bins makes it easy to make dynamic decisions on waste collection
route design by taking its capacity (waste level) as a constraint.

However, very few studies have combined this technology with
the best developed algorithms in solid waste collection research.
Faccio et al. (2011) introduced a framework by using the traceable
data from a smart bin and waste collection truck, both combined
with a number of sensors with a heuristic approach in a simulation



Table 1
Literature on solid waste collection.

Method Algorithm Optimization Use of GIS Capacity
constraint

Ref.

Vehicle Bin

Convention Mixed Integer Programming Cost No Yes No Agha (2006)
Mixed Integer Linear Programming Yes Yes No Anghinolfi et al. (2013)
Linear Programming No No No Kulcar (1996)

Heuristic Cluster-first-route-second Distance Yes Yes No Otoo et al. (2014)
Nearest neighbourhood No Yes Yes Faccio et al. (2011)

Meta-heuristic Chaotic Particle Swarm Optimization Waste quantity Yes Yes No Son (2014)
Variable Neighbourhood Search thresholding Cost No Yes No Nuortio et al. (2006)
Tabu Search Method No Yes No Gómez et al. (2015)
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environment. They considered different optimal replenishment
levels and oversize risk parameters in their study to compare the
collection route optimization results. Johansson (2006) also con-
sidered smart waste bins and designed dynamic scheduling and
routing for waste collection. They showed a reduction in opera-
tional cost, travel distance and labour hours compared to the static
fixed routing system. The following is a table that summarizes the
modelling approaches applied in a few works in the literature for
SWC route optimization. Table 1 clearly shows that most of the
studies on SWC route optimization did not consider bin capacity
or waste level. Thus, this study aims to fill the research gap with
regard to the limited number of studies on SWC route optimization
using real-time waste status data.

This study focuses on combining a newly developed meta-
heuristic algorithmwith a smart waste bin equipped with different
sensors. The study is performed in a simulation environment. In
this study, BSA is applied in a CVRP model along with the concept
of smart bin data. A number of local improvement methods are
also applied to improve the performance of BSA. The objective of
the study is to find the feasibility of the proposed method for waste
collection and route optimization in terms of distance, efficiency,
fuel consumption, fuel cost and CO2 emission. BSA is a simple opti-
mization algorithm. It has already produced good results in differ-
ent optimization problems. However, there is thus far no available
literature on BSA in solid waste collection route optimization.

2. Methodology

To apply the proposed algorithm, this study develops a capaci-
tated vehicle routing problem (CVRP) model in which the BSA algo-
rithm is incorporated with the CVRP model to solve the route
optimization problem. The BSA-based CVRP model uses data from
smart bins to collect waste efficiently. Smart bins can obtain real-
time waste data through a number of sensors, such as an ultrasonic
sensor that provides the bin waste level, a load cell that measures
the waste weight in the bin, etc. The bin also has a magnetic prox-
imity sensor on its lid that provides information every time the lid
is open (Mamun et al., 2015). All these sensors also help to monitor
whether the particular waste bin has been emptied or not. Hence,
real-time decisions can be made at the beginning of each collection
process to collect waste from the most prioritized collection nodes
and thus conserve travel distance, costs and emissions. The
detailed CVRP model and BSA optimization algorithm are
described below.

2.1. Capacitated vehicle routing problem model

The vehicle routing problem (VRP) addresses serving a set of
customers in reduced travel distant routes by starting and return-
ing at the depot (Ai and Kachitvichyanukul, 2009). CVRP is an
extension of VRP with capacity constraints. CVRP in solid waste
collection can be defined as collecting waste from a set of collec-
tion nodes (bins) by a homogenous or heterogeneous fleet of vehi-
cles of fixed capacity that cannot be violated, each starting from
and returning to the depot. The CVRP model is explained below,
where n is the number of bins and k is the number of vehicles
considered.

� A complete graph G = (V, E), where V={0, 1, . . . n} is a vertex
(bin) set and E is the arc set. Here, 0 represents the depot.

� Vertices i = 1,2 . . . n correspond to the bins, where n is the num-
ber of bins to be visited. Each bin has a non-negative waste
quantity ci inside it.

� A set of homogenous vehicles k = {1, 2 . . . K}, each with a capac-
ity of C, is stationed at the depot for waste collection.

� A non-negative cost, dij, is associated with each arc (i, j) 2 E and
represents the travel distance from bin i to bin j, where i– j.

� qijk represents the load of vehicle k while traversing arc (i, j).

To achieve the objective of the study, a number of constraints
are considered to make the model more realistic. They are
described below.

� All the vehicles start from and return to the depot;
� The depot also acts as the waste transfer facility;
� All the vehicles start at the same time from the depot;
� Each waste bin is visited by only one vehicle during each collec-
tion time;

� The cumulative waste of all the bins of a route must not exceed
the maximum capacity of the vehicle assigned to it;

� The fleet of vehicles and the bins are homogenous;
� Traffic congestion is neglected during waste collection.

The current study considers both the capacity of the vehicles
and the bins in the CVRP model. The CVRP model starts with a clus-
ter of most prioritized bins. This cluster is formed prior to every
collection by accessing the real-time waste data of bins. Bins that
exceed a predefined threshold waste level (TWL) of their capacity
are included in the cluster, and route optimization is performed
for this cluster of bins for solid waste collection optimization.

The mathematical formulation of the model is presented below.
The decision variables of the model depend on the vehicle capacity,
C, and the waste quantity of the next bin to be visited. Decision
variables are modelled in Eqs. (1) and (2) as follows.

Xijk ¼
1; if vehicle k traverses arc ði; jÞ
0; otherwise

�
ð1Þ

Yik ¼
1; if bin i belongs to the route of vehicle k
0; otherwise

�
ð2Þ
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The objective function to minimize the travelling distance is
defined in Eq. (3) as follows.

min
Xn
i¼0

Xn
j¼0

XK
k¼1

dijXijk ð3Þ

Subject to

Xn
j¼1

XK
k¼1

X0jk ¼ 1 ð4Þ

Xn
j¼1

q0jk ¼ 0 8k ¼ 1;2 . . .K ð5Þ

Xn
i¼0

XK
k¼1

Xijk ¼ 1 8j ¼ 1;2; . . .n ð6Þ

Xn
j¼1

Xijk ¼
Xn
j¼1

Xjik ¼ Yik 8i ¼ 0;1;2 . . .n; k ¼ 1;2; . . .K ð7Þ

Xn
i¼0

XK
k¼1

qjik �
Xn
i¼0

XK
k¼1

qijk ¼ cj 8j ¼ 1;2; . . .n ð8Þ

Xn
i¼1

ciXijk 6 C 8j ¼ 0;1 . . .n; k ¼ 1;2; . . .K ð9Þ

Xn
i¼1

XK
k¼1

Xi0k ¼ 1 ð10Þ

distij ¼ distji 8i ¼ 0;1;2 . . .n; j ¼ 0;1;2; . . .n ð11Þ
Eqs. (4) and (5) specify that vehicle k will start the tour from the

depot carrying no load. According to Eq. (6), each bin is visited by
only one vehicle. Eq. (7) ensures the continuity condition. That is, if
vehicle k enters a vertex, it must also leave the node. Eq. (8)
ensures that the vehicle empties the bins visited, and Eq. (9) repre-
sents that the total collected waste from all the bins visited in a
tour must not exceed the vehicle capacity. After the tour, the vehi-
cle returns to the depot according to Eq. (10). Eq. (11) shows that
the distance between two nodes is the same in both directions.

2.2. Backtracking Search Algorithm in the CVRP model

The Backtracking Search Algorithm (BSA) is a relatively new
population-based meta-heuristic algorithm developed by Civi-
cioglu in 2013. The BSA is a simpler and more effective evolution-
ary algorithm for optimization problems and has only one control
parameter. Its simplified and unique structure has encouraged the
solution of many complex real-world optimization problems
(Niamul Islam et al., 2016). The BSA is a population-based opti-
mization algorithm. It uses a large number of populations to find
the optimized result by applying two unique concepts: the histor-
ical population and map matrix. For each movement, the historical
population drags the solution towards the optimized result. It
allows for exploration and exploitation of better solutions within
a solution field to overcome the local minima trap. During the
exploitation search, the map matrix refines the solution. Readers
can find a clear explanation of the algorithm in Civicioglu (2013).
In the present study, each population represents the string of a
route starting and ending at the depot after visiting all the bins.
The BSA is modified in this study to apply to waste collection opti-
mization problems. The basic steps of this algorithm are explained
below.
2.2.1. Step 1: Initialization
The BSA produces each individual of the initial and historical

population based on a uniform distribution of boundary con-
straints using Eqs. (12) and (13).

Initial population; Pn;d � [ðlowd;updÞ ð12Þ

Historic population; HisPn;d � [ðlowd;updÞ ð13Þ

Fitness value; Distpn;d ¼ f ðpn;dÞ ð14Þ

Global best; Distg ¼ minðDistpn;d Þ ð15Þ

Best population; gbest ¼ Pn;dbest ð16Þ
Here, n 2 f1;2;3 . . .Ng and d 2 f1;2;3 . . .Dg, where N and D

are the population size and problem dimension, respectively; [
is the uniform distribution; Pn and HisPn are the target individuals
of the initial and historic population; and low and up are the
boundary constraints. Population size is the number of routes
considered, and dimension size is the number of bins to be
emptied. Distpn;d represents the fitness value for the total popula-
tion size, where Distg evaluates the best fitness value among
them, and the corresponding population is taken as the optimized
population, gbest .

2.2.2. Step 2: Selection I
At the beginning of every iteration t, the historical population

can be updated based on the ‘if-then’ rule while applying the fol-
lowing equation:

If a < b; then HisP :¼ Pja; b � [ð0;1Þ ð17Þ
where :¼ presents the update operation. BSA has a memory.
According to Eq. (17), the BSA designates a population belonging
to a randomly selected previous generation as the historical popu-
lation and remembers this historical population until it is changed.
In the next step, the order of the individuals is changed by a random
shuffling function according to Eq. (18).

HisP :¼ permuting ðHisPÞ ð18Þ
2.2.3. Step 3: Mutation + Crossover
The main difference between the proposed BSA model and the

conventional model is in this stage. This stage combines two main
steps of the original algorithmic form to produce a trial population
during every iteration. The aim of this stage is to produce a trial
population.

Mutant is the initial form of the trial population. To find mutant,
the map matrix is introduced. To obtain the map matrix, the fol-
lowing equation is applied.

Initial map matrix; map1:N;1:D ¼ 1

if a < bja; b � [ð0;1Þ; then for n from 1 to N do
mapn;uð1:½mixrate:rand:D�Þ ¼ 0ju ¼ permuting ðh1;2;3; . . .DiÞ ð19Þ
end
else
for n from 1 to N do; mapn;randiðDÞ ¼ 0; end ð20Þ
end

To obtain the trial population, mutant and offspring are found.
The BSA’s mutation process and the offspring finding for this study
are performed according to Eqs. (21) and (22)

mutant ¼ P þ ðmap � FÞ � ðHisP � PÞ ð21Þ

F ¼ d � rndn
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Fig. 1. Proposed BSA-based waste collection optimization model.
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Here, F controls the amplitude of the search direction matrix
ðHisP � PÞ, and d is the dimension of the problem. rndn is the
built-in MATLAB function for generating normally distributed val-
ues (0–1).

Offspring ¼ P þmutant ð22Þ
Unlike the conventional algorithm, the boundary condition of

the BSA is used for the Offspring and for the trial population. The
Offspring values are checked and updated according to the follow-
ing equations.

if Offspring < 1 then Offspring ¼ 1
if Offspring > d then Offspring ¼ d

From this updated Offspring, the initial trial population, Tn;d, is
found. As the node number of a bin is a real number, the
Offspring values are sorted in ascending order to find the index
value. This index value is set as the initial Tn;d. In case of a tie,
the order is determined according to the ascending order of the
mutant values for the respective Offspring values. By applying this
initial Tn;d in the CVRP model, a number of sub-routes are formed.
Finally, by applying four local search methods in these sub-routes
to improve the solution, the final Tn;d is obtained.

2.2.4. Step 4: Selection II
This step compares the fitness values of the trial populations

with the corresponding initial populations, and the population is
updated based on that. The condition to update the population is
shown below.

if DistTn;d < DistPn;d then DistPn;d ¼ DistTn;d and Pn;d ¼ Tn;d

From the updated population fitness value, the global fitness
value, Distg , and the optimized population, gbest , are updated
according to Eqs. (15) and (16). These steps are updated with every
iteration.

When the number of iterations meets the maximum iteration
t_max, gbest is taken as the optimized route with the optimized dis-
tance of Distg . To evaluate the effects of this optimized route, the
variation in fuel consumption, cost and CO2 emission is obtained
from this optimized distance.

Fig. 1 shows the operational flow of the developed BSA, includ-
ing the encoding and decoding of the particles.

2.3. Local improvement of the trial population

The fundamental BSA model cannot find the optimized route.
The routes found this way need to be locally improved. In this
study, four local search methods are applied to find the improved
routes. Among these, two methods are utilized for inter-route
improvement, and the remaining two are implemented for intra-
route improvement. A brief description, along with a figure
(Fig. 2), where the dashed line shows the new route after improve-
ment, is given below.

2-opt⁄: This is the first local search method that is applied in
trial routes. It is performed for inter-route improvement. Here,
every connecting link of the nodes of the sub-routes is broken to
connect with nodes from another sub-route to obtain improve-
ment. The complexity of this method neighbourhood is O(N2),
where N is the number of nodes. Fig. 2(a) is an illustration of
the method.
Or-opt-1: For inter-route improvement, this method is applied
next. It exchanges nodes between sub-routes. Here, every node
from a certain sub-route is adjusted between two nodes from
another sub-route to find an improved solution. Fig. 2(b) shows
how the method works.
2-opt: This local search method is the most commonly applied
method for locally improving a route. The 2-opt method
replaces non-adjacent links (i � 1, i) and (j, j + 1) from the route
with (i, j + 1) and (i � 1, j) by reversing the existing route
between nodes i and j. The complexity of this neighbourhood
method is O(N2), where N is the number of nodes. Fig. 2(c)
shows its function.
Or-opt: This is the last local improvement method that is
applied to upgrade the route. The method allows for relocating
1, 2 or 3 consecutive nodes from a route with new edges. Unlike
2-opt, it does not modify the orientation (Fig. 2(d)). The com-
plexity of Or-opt is O(N2), where N is the number of nodes.

2.4. Threshold waste level and scheduling model

A threshold waste level approach is applied in this study to find
its optimal value. This optimal threshold waste level (TWL) value is
found from different datasets. The objective of this study is to
obtain a range of filled percentages of waste collection nodes in
which a considerable amount of waste can be collected by optimiz-
ing the waste collection route. To validate the performance of the
proposed model, a scheduling of waste collection for four days is
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Fig. 2. Process flow of the local improvement methods (a) 2-opt*, (b) Or-opt-1, (c) 2-
opt, (d) Or-opt.
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also performed for a dataset, taking it as a hypothetical area. Thus,
the proposed model is applied in a number of renowned datasets
to validate its performance by comparison with other already
established algorithms. To obtain an optimal TWL value, this study
considers some fixed waste node filled value for different datasets
to find which TWL shows the most improved result using smart bin
data compared to the conventional collection system, where no
data are available. Detailed steps for finding the best TWL are as
follows.

(a) The model is applied to five datasets.
(b) The datasets consist of collection nodes from 32 to 77.
(c) The simulation study considered six TWL values between 0%

and 90%. The value of 0% represents the conventional system
of travelling to all collection nodes.

(d) Tightness is estimated for each dataset by calculating the
amount of waste carried per unit vehicle capacity.

(e) Tightness values of all datasets, as well as the collection of a
considerable amount of waste by travelling an optimized
distance route by a reduced number of vehicles, are studied
to obtain the best TWL.

Similarly, for scheduling, a dataset is considered from a hypo-
thetical area for scheduling four days’ waste collection to show
the improvement in a realistic scenario. The efficiency of the model
can be determined by its effectiveness over the conventional sys-
tem after applying it in a more realistic scenario. To find the feasi-
bility of the proposed model, scheduling is done for four days in a
randomly generated hypothetical area with waste collection loca-
tion co-ordinates and initial waste amounts. The assumptions con-
sidered here are described below.

(a) Waste is collected every alternate day.
(b) There is no collection during weekends.
(c) A fixed route is followed in the conventional system.
(d) Collections route may vary according to bin statuses in the

proposed system.
(e) The depot and waste transfer facility are situated in the

same location.
(f) After collecting each time, the waste amount for the next
day is randomly generated considering a mean waste gener-
ation rate along with a standard deviation.

(g) Waste collection is performed considering both 70% TWL
and visiting all the nodes.

(h) Efficiency and tightness are estimated by calculating the
amount of waste carried per unit distance and the fill status
of the vehicle after visiting all nodes.

(i) Fuel consumption is calculated according to the method pro-
posed by Larsen et al. (2009) using Eq. (23) as follows.
f consumption ¼ f total � ðf t;empty þ f t;fullÞ
W

ð23Þ

Here, f consumption is the fuel consumption for collection
(L/tonne); f total is the total fuel consumption (L/day); f t;empty

is the fuel consumption for driving an empty truck from
the garage to the collection area and from the point of
unloading to the collection area or garage (L/day); f t;full is
the fuel consumption for driving a full truck from the
collection area to the point of unloading (L/day); and W is
the amount of waste collected (tonne/day).
(j) The collection cost is determined based on fuel consumption
alone.

(k) The CO2 emission value is also obtained according to the
model by Lin (2010) using Eq. (24).
ECO2 ¼ W � D � EFfuel
F �Wave

ð24Þ

Here, W is the total amount of municipal solid waste trans-
ported by one vehicle (kg), D is the distance travelled by
the vehicle (km), EFfuel is the CO2 emission factor of fuel (kg
CO2/l), F is the fuel consumption rate (km/l), and Wave is
the average waste weight collected by all the vehicles (kg).

F ¼ D=ðfcollection �WÞ

Wave ¼
P

W
no: of vehicles
3. Results and discussion

To validate the effectiveness and performance of the proposed
algorithm, it has been tested for a number of benchmark data with
different sizes of bin nodes. The simulation has been conducted in
MATLAB 8.3 on a computer with an Intel Core i5 processor running
at 3.20 GHz and 2 GB of RAM. The BSA is one of the simplest algo-
rithms, as it requires only one parameter. Here, we have taken the
dimension as the number of bins in each dataset. The maximum
number of populations and maximum number of iterations are
50 and 120, respectively. All the simulation datasets that have been
used to test the algorithm can be found at (http://www.coin-or.
org/SYMPHONY/branchandcut/VRP/data/#V).

3.1. Algorithm performance

Based on the methodology described thus far, the Backtracking
Search Algorithm (BSA) in the CVRP model is applied to evaluate
the performance of the fundamental BSA without local algorithms
and the proposed BSA model with the application of local algo-
rithms. For this study, six datasets were used, with the number
of nodes ranging from 15 to 71. For the fundamental BSA model,
none of the datasets could achieve the best value, and with an
increase in the number of nodes, the gap between the obtained
value and the best known value increased, making this model inap-
plicable in collection route optimization. However, the proposed

http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/#V
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/#V
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BSA model achieved the best value for all datasets except for one.
The gap between its value and the best value was very narrow for
this problem instance. The results are summarized in the following
table.

3.2. TWL in the BSA algorithm for waste collection and route
optimization

The study is conducted to fulfil the main objective of optimizing
the waste collection route by implementing smart bins. This sec-
tion addresses the improvement in waste collection and route opti-
mization by applying the TWL concept in the BSA. The model is
applied in five datasets with a variation of the number of nodes
between 32 and 77; four datasets have the same vehicle size of
100 units, and the other has 140 units. Due to the fluctuation of
node demand in different problem instances, collection node
capacities also fluctuated in this study. As this study did not focus
on the optimization of the bin number or bin size but rather the
route to collect waste from the bin, a variable number of bins in
every location is considered based on the demand of that node.
Table 2
Obtained results from the application of the fundamental BSA and the proposed BSA to di

Dataset N Fundamental BSA

Distance Gap (%

P-n16-k8 15 463 2.89
P-n23-k8 22 618 16.82
A-n33-k5 32 1285 94.40
P-n40-k5 39 942 105.68
E-n51-k5 50 1318 152.98
F-n72-k4 71 970 309.28

Where n is the number of collection points and BKS is the best known solution found t

Table 3
Obtained results by applying the TWL concept in the BSA algorithm for different datasets

No. Datasets Capacity of
vehicle (unit)

Capacity of
bin (unit)

TWL
(%)

N V Dist
(uni

1 A-n33-k5 100 10 0 32 5 661
60 28 5 633
70 25 4 585
75 21 4 533
80 17 3 457
90 12 2 374

2 P-n40-k5 140 10 0 39 5 458
60 35 5 441
70 32 5 406
75 26 4 359
80 19 3 299
90 12 2 232

3 A-n46-k7 100 10 0 45 7 914
60 38 7 903
70 28 5 753
75 22 4 637
80 18 4 548
90 14 3 449

4 A-n60-k9 100 10 0 59 9 1402
60 41 8 1253
70 38 8 1237
75 31 6 1052
80 29 6 978
90 19 4 693

5 B-n78-k10 100 10 0 77 10 1279
60 54 9 1140
70 43 8 1077
75 27 6 732
80 21 4 613
90 11 2 346
Demand in the dataset is considered as the percentage of node
capacity. The maximum capacity of each bin is taken to be 10 units,
and the demand of the node is considered to be uniformly dis-
tributed across all the bins. To compute an efficient waste collec-
tion route, we have considered five TWLs: 60%, 70%, 75%, 80%
and 90%. Waste bins exceeding a certain TWL need to be collected.
Table 3 shows the results obtained, such as total distance, improve-
ment in distance, total collected waste and collection percentage,
and the tightness of the system under different datasets, TWLs,
nodes and vehicle and bin capacities, respectively. It is observed
that the proposed model showed improved results when using
the smart bin waste collection with TWLs. From the obtained
results, it can be seen that the best tightness generated was for
TWLs from 70% to 75% for all but one dataset with an optimized
distance, which is above 95%; the exception also had a very good
result of 86%. This problem instance (P-n40-k5) shows that the
tightness value for a TWL of 0% is more than that for 75%. However,
this model can result in collecting 78% of the total waste by travel-
ling 22% less distance with a tightness reduction of only 2%. Thus,
for all datasets, if waste is collected in between a 70% and 75% TWL,
fferent datasets.

Proposed BSA BKS

) Distance Gap (%)

450 0.00 450
529 0.00 529
661 0.00 661
458 0.00 458
522 0.19 521
237 0.00 237

hus far.

.

ance
t)

Improvement
(%)

Total collected
waste

Waste
collected (%)

Tightness
(waste/capacity)

0.00 446 100 0.89
4.24 431 96.64 0.86
11.50 392 87.89 0.98
19.36 336 75.34 0.84
30.86 252 56.50 0.84
43.42 180 40.39 0.90

0.00 618 100 0.88
3.71 588 95.15 0.84
11.35 564 91.26 0.81
21.62 480 77.67 0.86
34.72 351 56.80 0.84
49.34 219 35.44 0.78

0.00 603 100 0.86
1.20 587 97.35 0.84
17.61 475 78.77 0.95
30.31 389 64.51 0.97
40.04 313 51.91 0.78
50.86 222 36.82 0.74

0 829 100 0.92
10.63 738 89.02 0.92
11.77 713 86.01 0.89
24.96 586 70.69 0.98
30.24 517 62.36 0.86
50.57 319 38.48 0.80

0.00 937 100 0.94
10.87 848 90.50 0.94
15.79 757 80.79 0.95
42.04 495 52.83 0.83
51.46 373 39.81 0.93
72.60 189 20.17 0.95



124 M. Akhtar et al. /Waste Management 61 (2017) 117–128
a distance savings of up to 42% can be obtained by collecting a high
percentage of waste with a minimized number of vehicles. For a
TWL of 80–90%, with an increase of TWL, the distance is decreased;
however, in most cases, the percentage of waste collected is the
least for all datasets, which would not be convenient for the waste
collection authority. Thus, at a 70–75% TWL, the developed system
provides the most efficient and optimized values.

The variation of different parameters with respect to the change
in TWL is shown in Fig. 3. The TWL is, in fact, directly related to the
number of vehicles, distance reduction and collected waste. Fig. 3
(a) shows that, with the decrease in the number of nodes, the
length of the route is decreased, thus resulting in fewer vehicles,
as seen in Fig. 3(b). As with the increase in TWL, the number of col-
lection nodes decreases, and the total collected waste is also
reduced. Fig. 3(c) illustrates this pattern. At 80–90% of TWL,
Fig. 3(d) shows that the fewest vehicles and the minimum travel
distance are obtained; however, the tightness of these TWLs is also
the least. Moreover, at a TWL of 80–90%, collected waste is lowest
in all cases. Thus, it can be concluded that with the lowest-cost
routes, it is not necessary that the waste collection and route be
optimized. However, it is clear from Fig. 3 that in almost all data-
sets, all the obtained results are fairly good at a 70–75% TWL.

It can be seen from Fig. 3(d) that among all TWL values, tight-
ness reaches the maximum value at 70% and 75% only with
reduced distance routes. Nonetheless, in the case of the application
of this model in real case studies, the TWL value may vary from
area to area because of the waste management level decisions,
waste generation type and waste collection components. For
example, in the case of dataset (B-n78-k10), as seen from Table 2,
the tightness values at the 70% and 90% TWLs are the same and are
maximal. However, the 90% TWL collects a very small amount of
waste compared to the 70% TWL, which ultimately makes the sys-
     (a) 
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Fig. 3. Change of pattern in different TWL (a) route improvemen
tem unsuitable. Again, for (A-n60-k9), although the 75% TWL pro-
duces the best toughness value, according to the generation rate of
waste in that area, waste can be collected considering a 70% TWL. If
there is a potential for a higher generation rate, then a 70% TWL
ensures a lower chance to overflow the waste bin, as using a 70%
TWL collects almost 18% more waste than does using a 75% TWL
in a more optimized route. Otherwise, it is better to collect consid-
ering a 75% TWL that provides a 25% optimized route, ensuring the
best utilization of the waste collection vehicle. Hence, the model
proposed in this study provides diverse choices for adjusting differ-
ent parameters to obtain the best waste collection decision for an
area.

3.3. Scheduling for waste collection route optimization

The scheduling of a waste collection route is conducted to show
the improvement in waste collection efficiency when optimizing
routes by applying the TWL concept. This study has applied dataset
no. 2 (P-n40-k5) for the 4-day schedules. To make the waste gen-
eration condition stochastic, an average waste generation rate
(�x), standard deviation (r) and fixed mean inflow are considered
for simulation. The waste generation is normally distributed
among all the waste nodes. The average generation rate is taken
as 20% of the node capacity, and the standard deviation is 50% of
it. It is found that at TWLs of 70% and 75%, waste can be collected
more efficiently by travelling an optimized route; for scheduling
purposes, a 70% TWL is considered. However, for the conventional
system, the initial optimized route is taken as the default route for
every collection, as a fixed route is always considered in this
system.

For simple design and ease of calculation, 10 units of distance
are considered to be 1 kilometre (km), and 1 unit of waste is
(b)
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considered to be 1 kilogram (kg) of garbage. A front-loader diesel
waste collection truck (compaction) with a fuel efficiency of 0.67
(L/km) is considered for the model. For estimating fuel (diesel)
cost, the unit diesel cost is taken as MYR 1.6/l. While estimating
CO2 emissions, for diesel fuel, the CO2 emission factor EFfuel = 2.67
kgCO2/l.

Tables 4 and 5 summarize the results for every collection day
for both systems. It is found that the proposed model outperforms
the conventional system in every parameter, e.g., distance, effi-
Table 4
Conventional model for solid waste collection and route optimization.

No. Day N V Collected
waste (W)

Expected total waste
for collection (kg)

Wa
col
(%)

0 – – – – 618 –
1 Monday 39 5 618 360 100
2 Wednesday 39 3 360 287 100
3 Friday 39 3 287 477 100
4 Monday 39 4 477 – 100

Total/average – 15 1742 – 100

Table 5
TWL-based proposed model for solid waste collection and route optimization.

No. Day N V Collected
waste (W)

Expected total waste
for collection (kg)

Waste
collected
(%)

0 – – – – 618 –
1 Monday 32 5 564 414 91.26
2 Wednesday 7 2 146 555 35.27
3 Friday 23 4 433 599 78.02
4 Monday 25 4 452 – 75.46

Total/average – 15 1595 – –
% – – – – �8.61
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Fig. 4. Scheduling performance of the two systems in terms of (a) fue
ciency, fuel consumption, fuel cost and CO2 emission. From Table 5,
it is seen that the lowest amount is collected on day 2 (only 35%).
However, as seen on the next collection day, the number of over-
flow nodes is only 2. A maximum of 9 waste collection nodes over-
flow on the next Monday due to the accumulation of waste over
the weekend. Table 5 also summarizes the increase or decrease
of the parameters compared to the conventional system.

The obtained result patterns over the collection time are illus-
trated in Fig. 4. It is found that the proposed optimization model
ste
lected

Distance
(km)

Efficiency
(W/distance)

Fuel
consumption
(l/kg)

Fuel
cost
(RM)

CO2

emission
(kgCO2)

– – – – –
45.8 1.35 0.04 7.12 11.83
52.1 0.69 0.07 14.33 26.09
51.1 0.56 0.08 14.08 32.81
54.5 0.88 0.05 10.10 17.64

203.5 0.87 0.06 11.41 22.09

No. of
overflown
nodes

Distance
(km)

Efficiency
(W/distance)

Fuel
consumption
(l/kg)

Fuel
cost
(RM)

CO2

emission
(kgCO2)

– – – – – –
0 40.6 1.39 0.03 5.83 10.92
6 16.7 0.87 0.03 5.36 14.09
2 34.2 1.27 0.03 6.16 12.86
9 37.1 1.22 0.04 6.49 11.01

– 128.6 1.19 0.03 5.96 12.22
– �36.80 +36.78 �50.00 �47.77 �44.68
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Fig. 6. Comparison of the computational time of the BSA with that of other
algorithms for large-scale problems.
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shows better results than the conventional system in every
aspect. The differences between the values of the two models
are very high. Fig. 4(a) shows that in the proposed model, the
maximum fuel is consumed on day 4. Whereas in the conven-
tional system model, it is on day 3. However, the difference
between these two values is very high. The cost is highest on
day 2 for the conventional system, whereas for the proposed
system, the costliest collection day is day 2 (Fig. 4(b)). Fig. 4(c)
proves that the proposed model is more efficient in terms of
waste collected per unit distance than the conventional system.
The lowest amount the proposed system carries is 8.75 kg per
km; for the conventional system, it is 5.61 kg per km. In terms
of CO2 emission, it is clear from Fig. 4(d) how excessively the
conventional model emits compared to the proposed system.
Thus, it can be concluded from all the results that the proposed
model collects 91.5% of the total generated waste by travelling
less distance with the highest efficiency and less fuel consump-
tion, fuel cost and CO2 emission.

The proposed model performs better on each day. Fig. 5 gives an
overview of the difference in these parameters between the two
models. The values are adjusted to show the comparison between
the two systems in the same illustration. It is seen that after four
days, the proposed system has collected a greater percentage of
waste by travelling a considerably shorter distance. It is, on aver-
age, more efficient and can conserve a greater amount of fuel, costs
and emissions.

3.4. Comparison between the proposed algorithm and other algorithms

To assess the performance of the proposed BSA algorithm, the
results of the five datasets are compared with established
Table 6
Comparison of the proposed algorithm with other algorithms.

Datasets N V Chen et al. (2006) Ai and Kachitv

SR-1

Dist. T(s) Dist. T

A-n33-k5 32 5 661 32.3 661 1
A-n46-k7 45 7 914 128.9 914 1
E-n51-k5 50 5 528 300.5 521 2
F-n72-k4 71 4 244 398.3 237 5
M-n101-k10 100 10 824 874.2 821 6

Where: N, No. of nodes; V, required No. of vehicles; Dist., Distance; T, computational tim
algorithms. This section also summarizes the results found from
Ai and Kachitvichyanukul (2009). Chen et al. (2006) applied
discrete particle swarm optimization (dPSO) along with simulated
annealing (SA) to avoid being locally trapped and used the dataset
for a waste collection system. Ai and Kachitvichyanukul (2009)
also used the PSO algorithm to solve a CVRP model with two
approaches. Both studies proposed two solution models, named
SR-1 and SR-2, for two different dimension sizes. For locally
improving the routes, in this study, three local algorithms (2-opt,
1-1 exchange and 1-0 exchange) were applied. However, the SR-
2 model produces better results than does SR-1, which also fails
to obtain the best value for problem instances exceeding a node
number of 75. Table 6 summarizes the best results found after
10 runs of the proposed algorithm for each dataset. The results
achieving the best value are presented in bold letters. Although
the proposed model shows little error for the dataset as the num-
ber of nodes increases, the number of vehicles remains the same as
the best known value. Nonetheless, model cannot outperform SR-1
and SR-2, but it shows better results than the other algorithm.

In terms of computational time, although the BSA cannot out-
perform SR-1 and SR-2, it outperforms the model proposed by
(Chen et al., 2006) in all but one problem. Fig. 6 shows how the
computational time differs for different models.
4. Conclusion

The study found a modified BSA algorithm in a CVRP model
with smart bins to be feasible for solid waste collection route opti-
mization. The developed CVRP model determines the optimized
route for most prioritized solid waste collection nodes by minimiz-
ing the travel distance based on constraints and objective func-
tions. The fundamental BSA is modified by applying a number of
ichyanukul (2009) Proposed BKS e (%)

SR-2

(s) Dist. T(s) Dist. T(s)

1 661 13 661 70.6 661 0.00
9 914 23 914 90.4 914 0.00
1 521 22 522 139.5 521 0.19
8 237 53 237 252.7 237 0.00
0 820 114 825 522.4 820 0.61

e; BKS, best known solution; e, error between proposed methods solution and BKS.
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local improvement algorithms. It is seen that the modified BSA
algorithm can produce good results within a considerable time
period, especially for problem instances under 50 nodes. Threshold
waste level concepts are used in the BSA-based CVRP model under
different datasets to find the best threshold level at which waste
collection, route optimization and related efficiencies are optimal.
Accordingly, different datasets are tested at 5 TWLs to determine
the optimal waste collection TWL. The study shows that the pro-
posed model improves different parameters by optimizing the
waste collection route. The obtained results indicate that the
developed system provides the most efficient and optimized values
of travel distance, total waste, waste collection efficiency and tight-
ness at TWLs of 70–75% for all the benchmark datasets. However,
the scheduling concept is applied at 70% of TWL and at every node
for collection and route optimization. Based on the obtained results
for all aspects of performance, such as collected waste, distance,
efficiency, fuel consumption, fuel cost and emission, the proposed
model is found to be better than that of the conventional system.
This method gives a diverse number of options for finding the most
efficient TWL based on the waste generation pattern. Thus, it can
be concluded that the proposed BSA-based CVRP model using the
TWL concept provides the best waste collection and route opti-
mization along with smart bin data implementation. However, a
further study can be conducted with the same developed algo-
rithms and models considering more constraints and uncertainties.
In addition, a case study can also be piloted for the feasibility of
real-world applications.
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