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A B S T R A C T

In any aquatic system analysis, the modelling water quality parameters are of considerable significance. The
traditional modelling methodologies are dependent on datasets that involve large amount of unknown or un-
specified input data and generally consist of time-consuming processes. The implementation of artificial in-
telligence (AI) leads to a flexible mathematical structure that has the capability to identify non-linear and
complex relationships between input and output data. There has been a major degradation of the Johor River
Basin because of several developmental and human activities. Therefore, setting up of a water quality prediction
model for better water resource management is of critical importance and will serve as a powerful tool. The
different modelling approaches that have been implemented include: Adaptive Neuro-Fuzzy Inference System
(ANFIS), Radial Basis Function Neural Networks (RBF-ANN), and Multi-Layer Perceptron Neural Networks
(MLP-ANN). However, data obtained from monitoring stations and experiments are possibly polluted by noise
signals as a result of random and systematic errors. Due to the presence of noise in the data, it is relatively
difficult to make an accurate prediction. Hence, a Neuro-Fuzzy Inference System (WDT-ANFIS) based augmented
wavelet de-noising technique has been recommended that depends on historical data of the water quality
parameter. In the domain of interests, the water quality parameters primarily include ammoniacal nitrogen
(AN), suspended solid (SS) and pH. In order to evaluate the impacts on the model, three evaluation techniques or
assessment processes have been used. The first assessment process is dependent on the partitioning of the neural
network connection weights that ascertains the significance of every input parameter in the network. On the
other hand, the second and third assessment processes ascertain the most effectual input that has the potential to
construct the models using a single and a combination of parameters, respectively. During these processes, two
scenarios were introduced: Scenario 1 and Scenario 2. Scenario 1 constructs a prediction model for water quality
parameters at every station, while Scenario 2 develops a prediction model on the basis of the value of the same
parameter at the previous station (upstream). Both the scenarios are based on the value of the twelve input
parameters. The field data from 2009 to 2010 was used to validate WDT-ANFIS. The WDT-ANFIS model ex-
hibited a significant improvement in predicting accuracy for all the water quality parameters and outperformed
all the recommended models. Also, the performance of Scenario 2 was observed to be more adequate than
Scenario 1, with substantial improvement in the range of 0.5% to 5% for all the water quality parameters at all
stations. On validating the recommended model, it was found that the model satisfactorily predicted all the
water quality parameters (R2 values equal or bigger than 0.9).

1. Introduction

Rivers are considered as one of the most critical sources of water for
irrigation purposes, industrial needs and other uses. The dynamic

nature of the river systems and their easy accessibility for waste dis-
posal make the river systems most vulnerable to the adverse effects of
environmental pollution. The term “water quality” refers to the state or
condition of water, which takes into account the physical, chemical,
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and biological properties of the water. In conducting the study of any
aquatic system, modelling the water quality parameters is of utmost
significance. Evaluation and prediction of the surface water quality is
necessary for effective management of river basins so that sufficient
measures can be adopted to ensure that the pollution levels remain
within permissible limits. Accurate prediction of future phenomena in
relation to the water quality is the essence of optimal water resources
management. The conventional process-based modelling methods offer
comparatively accurate predictions for water quality parameters.
However, these models have limitations as they depend on data sets
that require a substantial amount of processing time and a huge amount
of input data that is often unknown.

Nearly 60% of the major rivers in Malaysia are used for agricultural,
household and industrial applications (DID, 2000). As per Rosnani
Ibrahim (Ibrahim, 2001), the major sources of pollution that affect
these rivers are dumping of sewage, waste releases from medium and
small-sized industries not having proper waste matter treatment
equipment, clearing of land and groundwork activities. On the basis of
the records of 1999, 50 catchments (that is 42% of river) were con-
taminated with SS (suspended solids) caused by badly planned and
unregulated earth clearing attempts and 33 catchments (that is, 28% of
river) were polluted with AN (ammoniacal nitrogen) from activities
related to cattle breeding and household sewage dumping.

Johor River is regarded as somewhat polluted as per DOE
(Department of Environment) (DOE, 2007) because of the develop-
mental activities alongside the bank of the river. Moreover, the river
continues to be chocked and dumped by waste and litter due to lack of
enforcement by the local administration. These pollutants ultimately
end up in the Joho River tributaries, rich areas for nourishment and
breeding of poultry and fish. Consequently, several statistical frame-
works and computer simulations must be introduced as powerful and
critical tools for planning and monitoring the maintenance of the water
bodies.

Growing concerns regarding environment, along with scarce
funding, are giving rise to a growing interest in cost-effective and ju-
dicious strategies for the management of water quality. Since the
quality of water directly affects the health of the humans, quality im-
provement of the water accessible for human use will play a significant
role in decreasing health related hazards.

The project of water pollution regulation is based on the manage-
ment of water quality. It estimates the kind of water quality from the
present water quality condition, as well as from the rules of disposal of
the pollutants into the river. Moreover, many models for water quality,
like stochastic and deterministic models, have been created so as to
provide best processes to conserve the quality of water (Hull et al.,
2008). Nevertheless, getting efficient and precise water quality model
in complex water resources is still difficult because of the variations and
complications in the actual world, the ambiguities in the framework
and variables of the model, and the deviations in the field data. Thus,
conventional methods for data processing are not sufficiently efficient
anymore for solving issues related to the water quality. Additional ef-
forts are required to improve the consistency of the findings of the
model.

Deterministic models try to represent all the chemical and physical
processes included in statistical terms, with variables acquired either
from past data or obtained empirically, or computed by experience or
examination. Generally, the differential equations are simplified so as
to find solutions suitable for the model. Solution of the involved
equations may need suppositions and simplifications which are derived
from the performance of the model, and usually practical experience is
necessitated from the user prior to achievement of optimal outcomes.

Statistical models attempt to seek general rules from the experi-
mental data, which can be done by obtaining information from the field
data. Statistical modelling and assessment involve a meticulous selec-
tion of techniques for analysis, and validation of suppositions as well as
data. A majority of such models are quite complex and involve a

substantial field data amount to conduct the analysis. Moreover, several
statistical-based models of water quality, which assume the association
among the prediction and the response variables, are distributed nor-
mally and linear in nature. Nevertheless, since the quality of water can
be impacted by several parameters, conventional techniques for data
processing are not sufficiently efficient anymore for solving this issue,
and as such parameters show a complex non-linear relation to the water
quality prediction parameters. Thus, using statistical techniques gen-
erally does not have high accuracy.

Of late, the AI (Artificial Intelligence) approach has been recognised
as an effective alternative method for modelling of complicated non-
linear systems. Generally, such models do not take into account the
internal process but develop models through the inputs and outputs
correlation. Presently, AI is used exhaustively for estimating several
water-related regions (Muttil and Chau, 2006).

Recently, AI has offered the techniques for operation optimisation
and selection of equipment, and problem solving that involve large
quantities of data that cannot be processed by humans for the purpose
of decision making. For this purpose, AI methods are proficient to re-
plicate this behaviour and balance the deficiency. Thus, the growth of
technology of efficient parallel computing and growing computing
power have facilitated the researchers to employ the AI approaches (for
instance, ANN (Artificial Neural Network) and ANFIS (Adaptive Neuro-
Fuzzy Inference System)) for field data modelling solutions. The neuro-
fuzzy technique has been used effectively in certain fields of water
bodies engineering like the rainfall-runoff model (Chang and Chen,
2001) and basin operation (Chang and Chang, 2006; Chang et al.,
2005). ANFIS has been known to enhance the accuracy of day-to-day
estimation of evaporation (Kişi, 2006), reservoir water level prediction
(Chang & Chang, 2006) and prediction of the river flow (Firat and
Güngör, 2007).

The data obtained from experimentation and examination may be
corrupted by signals of noise because of objective and/or subjective
errors. For instance, experimental faults may be caused by measuring,
recording, reading and external situations. As this noise can possibly
distort the model outcomes, it is essential to eliminate them (i.e. signal
de-noising) prior to the use of this data. The noisy signals can be de-
noised by applying a series of linear filters (Bell and Martin, 2004).
Nonetheless, these filters are more suitable for linear systems rather
than the non-linear ones. Moreover, the FAT (Fourier analysis tech-
nique) is a standard tool for de-noising, though it is only favourable for
de-noising signals or data involving stable noises. In addition, as there
are unstable noises in real situations, it cannot be applied effectively.
Thus, to solve the issues of conventional de-noising methods, more
complex methods, like the WDT (wavelet de-noising technique), have
been recommended. Above all, WDT is effective for de-noising multi-
dimensional temporal or spatial signals having stable or unstable
noises. Also, it has been extensively applied to industrial systems for
information finding and patterns recognition (Avci, 2007; Tirtom et al.,
2008). Nonetheless, some of these investigations were employed for
water quality monitoring, where its data was utilised for estimation of
parameters (Dohan and Whitfield, 1997).

In Malaysia WQIP requires extensive calculations and transforma-
tions. Two studies have been proposed to use Artificial Intelligence
techniques (AI) in Malaysia in order to develop an accurate predictive
model to WQP. However, many studies show that AI needs pre-pro-
cessing tool to enhance the accuracy of the model practically in dealing
with measured water quality data which is often contain noise (Han
et al., 2011).

The main objective of this investigation is to evolve a computa-
tionally proficient and robust method for the estimation of water
quality variables decreasing the labour and cost for measurement of
those parameters. This study focuses on the Malaysian Johor River si-
tuated in Johor State where the water quality dynamics are sig-
nificantly altered. This research has many primary objectives, as fol-
lows:
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• To evaluate and assess the correlation among the parameters of
water quality on the basis of the experimental data using ANN
(Artificial Neural Network).

• To propose various ANN approaches, like MLP (Multi-Layer
Perceptron) Neural Network and RBF (Radial Basis Function) Neural
Network so as to confirm the effectiveness of these techniques in the
estimation of the parameters of water quality.

• To get familiar with the correctness of the ANFIS (Adaptive Neuro-
Fuzzy Inference System) in the prediction of the parameters of water
quality.

• To develop an augmented WDT-ANFIS (wavelet de-noising tech-
nique with the Neuro-Fuzzy Inference System).

• To examine the effectiveness of the suggested model for spatial
position by presenting two different situations: the first situation
(Scenario 1) is designed to set the model prediction at each station
pertaining to the water parameters by considering the 13 input
parameters from the same station. Where for Scenario 2, the input
parameters for this scenario based on the measured water quality
parameters from the same station and the predicted parameter from
upstream station.

• To validate the augmented WDT-ANFIS (wavelet de-noising tech-
nique with the Neuro-Fuzzy Inference System) based on the ex-
perimental data for the duration 2009–2010.

2. Case Study: Johor river basin

Johor state is regarded as the third largest region in Malaysia with
an area of 19.984 km2. It comprises of eight districts namely are Kota
Tinggi, Muar, Pontian, Johor Bahru, Segamat Kluang, and lastly Batu
Pahat which is considered as the second largest districts in Johor with
an area of 187,702.06 ha. Johor state has five principal rivers which are
Sungai Muar, Sungai Johor, Sungai Endau, Sungai Batu Pahat and
Sungai Sedilfi. This research sheds the light solely on Sungai Johor
river. The Johor river basin is located in the southeast of Peninsular
Malaysia. At an altitude of 1010m, the Johor river orginates from the
Gunung Belumut and from Bukit Gemuruh at an altitude of 109m un
the north. The river has irregular shape, its drainage area is around
2636 km2 and its length is approximately 122.7 Km. The river flows
southeast into the Johor straits. An average annual precipitation of
2470mm added to the river while during the period of 1963–1992, the
annual mean discharge at Rantau Panjang was found to be 37.5 m3/s.
The Johor river and its tributaries play a significant role as water
suppliers for the state of Johor as well as for Singapore. Many factors
contribute to the deterioration of the water quality of Johor River,
mainly include the release of different kinds of pollutants at levels ex-
ceeding the allowed limits with the absence of local authorities’ en-
forcement. These pollutants travel through Johor River and ultimately
end in the estuaries of the rivers which are known to be a natural
feeding area for poultries and fishes and a natural environment that
provide spawning. Fig. 1 depicts the location map of the surveying area
which compromises of four monitoring stations on Johor River.

3. Methodology

3.1. Multi-Layer perceptron neural network (MLP-ANN)

A feed-forward network is the multi-layer perceptron neural net-
work (MLPNN) that includes many layers of neurons, where one neu-
ron’s output is propagated to the other neuron’s input that is in the next
layer. Fig. 2 presents the multi-layer perceptron neural network. In
MLPNN, the input layer’s nodes only propagate the input values of the
first hidden layer’s nodes. In the hidden layers, each node’s in-
put–output relationship can be presented as follows:

∑=
⎛

⎝
⎜ +

⎞

⎠
⎟y f w x b

j
j j

(1)

where, xj signifies the output from the previous layer’s j node, wj de-
notes the connection weight between the current node and j node, b
represents the current node’s bias, and f defines a non-linear transfer
function usually of the sigmoid form as shown in Eqs. (3),(4):

=
+

f z
z

( ) 1
1 exp( ) (2)

where, z denotes the weighted sum pertaining to the input to the
neuron and f z( ) signifies the neuron output. The output nodes’ in-
put–output relationship is comparable to the one defined by Eqs. (3),
(4), with the exception of the case where the network is employed for
function approximation, and the type of function f could vary (e.g.
linear function).

The units define a MLPNN architecture, which allows computation
of a non-linear function in terms of the scalar product pertaining to the
weight vector and input vector. Overall, the MLPNN models’ perfor-
mance relies on the network’s inherent architecture. Apart from the
number of hidden layers as well as the number of neurons pertaining to
each layer, it also includes the computation type applied to each
neuron.

3.2. Adaptive neuro-fuzzy inference system (anfis)

Jang (1993) first put forward the Adaptive Neuro-Fuzzy Inference
System (ANFIS) that allowed realising a highly non-linear mapping and
compared with common linear methods, it is considered to be superior
in yielding non-linear time series (Jang, 1993). The ANFIS architecture
was employed throughout this research for the first-order Sugeno fuzzy
model (Sugeno and Kang, 1988). ANFIS can be defined as a multi-layer
feed-forward network that employs neural network learning algorithms
as well as fuzzy reasoning to aid in mapping input space with that of the
output space (Chang and Chang, 2006). Considering that for a first-
order Sugeno fuzzy model, the fuzzy inference system has one output, f,
and two inputs, x and y, a common rule set that includes two fuzzy
‘if.then’ rules can be defined as follows:

= + +If x is A and y is B then f p x q y rRule 1: ,1 1 1 1 1 1 (3)

= + +If x is A and y is B then f p x q y rRule 2: ,2 2 2 2 2 2 (4)

where, A1, A2 and B1, B2 signify the membership functions (mfs) per-
taining to inputs x and y, respectively; pi, qi and ri (i= 1 or 2) represent
the linear parameters pertaining to the first-order Sugeno fuzzy model’s
consequent part. Fig. 3(a) represents the fuzzy reasoning mechanism
pertaining to this Sugeno model that also allows deriving the output
function (f) from that of inputs x and y. Fig. 3(b) presents the corre-
sponding equivalent ANFIS architecture, in which similar functions are
associated with the same layer’s nodes. ANFIS comprises five layers as
stated below:

3.3. Wavelet de-noising

The next logical step is characterised by wavelet analysis post the
short-time Fourier transforms (STFT). This is with regards to the win-
dowing technique that includes variable-sized regions. With the help of
wavelet transform (WT), long time intervals can be employed in those
areas where more precise low frequency information is needed, as well
as for shorter regions in which high frequency information is needed.
Overall, the key benefit provided by the wavelets is allowing con-
ducting local analysis for localised area pertaining to a larger signal.
The discrete-time WT pertaining to a time domain signal x k[ ] can be
expressed as follows (Dohan and Whitfield, 1997):
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∑= −−DWT m n x k ψ n k( , ) 1/ 2 [ ] [2 ]m

k

m

(5)

Here, n( ) defines the mother wavelet, while m represents the scaling
andk denotes the shifting indices. The DWT logarithmic frequency
coverage is provided through scaling, as opposed to the uniform fre-
quency coverage of STFT. This analysis technique includes segmenting
a signal into components at various frequency levels, which are linked

by the powers of two (a dyadic scale). The filtering approach that is
applied to multi-resolution WT involves formation of a series of half-
band filters that segment a spectrum into low and high frequency
bands. The formulation is based on a wavelet function or high-pass (UP)
filter as well as a scaling function or low-pass (LP) filter. Wavelet multi-
resolution analysis (WMRA) allows constructing a pyramidal structure
that needs an iterative application of wavelet functions and scaling to
high-pass and low-pass filters, respectively. At the beginning, these
filters are first applied to the entire signal band under high frequency
(small-scale values) and then the signal band is decreased at every stage
gradually. As presented in Fig. 4, the detail coefficients of Dl, D2 and D3
define the high-frequency band outputs, while the approximation
coefficients of Al, A2 and A3 define the low-frequency band outputs.

Numerous factors need to be accounted when wavelets are em-
ployed to de-noise the WQP data. Examples of such choices include the
level of decomposition, wavelet and thresholding methods to be em-
ployed. MATLAB provides various families of wavelets such as Morlet,
Meyer, Mexican hat, Coiflets, Haar, Symlets, Daubechies and Spline
biorthogonal wavelets, and also offers additional documentation re-
garding these wavelet families (“Wavelet Toolbox – MATLAB,” 2019).
Only orthogonal wavelets need to be accounted to get perfect re-
construction results. Certain advantages are associated with the or-
thogonal wavelet transform. It can be characterised as being relatively
concise, permitting perfect reconstruction of the original signal and
relatively easy to calculate. The two common employed approaches for
thresholding a signal include hard thresholding and soft thresholding,
which are employed in the MATLAB wavelet toolbox. Although the
easiest method is hard thresholding, better results are achieved through

Fig. 1. A map showing the geographical setting of the survey area with four field monitoring stations on the main stream.
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Fig. 2. A multi-layer perceptron neural network architecture.
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soft thresholding versus hard thresholding. Thus, this study uses soft
thresholding. Four threshold selection rules can be used with the wa-
velet toolbox, which employ statistical regression pertaining to the
noisy coefficients over time that allows getting a non-parametric esti-
mation regarding the reconstructed signal absent noise. This study ex-
amined just Sqtwolog, wherein a fixed form of threshold is employed,
leading to minimax performance that is multiplied by a factor propor-
tional of signal length’s logarithm. In this research, in terms of the
decomposition level, we can conclude that a level 4 decomposition

offered reasonable results post applying the trial-and-error method to
all modules.

3.4. Model performance evaluation

It is necessary to clearly recognise the criteria that are associated
with judging the model’s performance. The criteria employed to assess
the performance of the model in this study were clearly mentioned in
the literature. Dogan et al. (Dogan et al., 2009) employed the Average
Absolute Relative Error (AARE), which not only provides the perfor-
mance index with regards to predicting water quality parameters but
also demonstrates the prediction errors distribution. To examine the
performance of the model, Singh et al. (2009) employed the bias sta-
tistical index. The bias signifies the mean of all the individual errors as
well as allows determining if the dependent variable is underestimated
or overestimated by the model. In this study, correlation coefficient as
well as Root Mean Square Error (RMSE) was employed to examine the
model’s performance (Soyupak et al., 2003; Zhao et al., 2007).

Usually, the model performance is assessed through coefficient of
determination, as put forward by Nash and Sutcliffe (1970), while MSE
is employed to check the level of fitness between the network output
and desired output.

In this research work, the models’ performances were assessed
based on three statistical indexes. As mentioned by Nash and Sutcliffe
(1970), coefficient of efficiency (CE) is commonly employed to assess

Fig. 3. (a) A two-input first-order Sugeno fuzzy model with two rules; (b) An equivalent ANFIS structure.

Fig. 4. A schematic representation of the pyramid structure representing the
WMRA.
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the performance of the model.
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where n represents the number of observations, Xm and Xp define the
measured and predicted parameters, respectively, and X̄m signifies the
average of measured parameter.

Mean square error (MSE) is employed to see the level of fitness
between network output and the desired output. Better performances
are guaranteed with smaller MSE values. It is defined as follows:

∑= −
=

MSE
n

X X1 ( )
i

n

m p
1

2

(7)

More commonly, the coefficient of correlation (CC) is employed to
examine the linear relationship between the measured and predicted
dissolved oxygen. This can be expressed as follows:
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Further, for visual comparison of the predicted and measured va-
lues, the Scatter plot was employed (Kuo et al., 2007).

3.5. Input variables and data processing

One of the key functions of ANN is to identify the model input
parameters that could impact the output parameters considerably. As
indicated above, the selection of input parameters depends on a priori
knowledge regarding causal variables as well as statistical analysis
pertaining to the potential outputs and inputs. In the literature, dif-
ferent input parameters were employed to develop the model to de-
termine water quality parameters, as presented in Table 1.

On the basis of the literature, the following water quality para-
meters were chosen for ANN modelling: temperature (Temp), electrical
conductivity (COND), salinity (SAL), nitrate (NO3), turbidity (TURB),
phosphate (PO4), chloride (CI), potassium (K), sodium (Na), magne-
sium (Mg), iron (Fe) and Escherichia coli (E-coli). The basic statistical
parameters, i.e. mean, minimum, maximum, standard deviation (S.D.),
and coefficient of variation (CV) of the input and output parameters
deployed in this study are depicted in Tables 2 and Table 3.

Based on the concentration levels of both output and input para-
meters, large changes between the samples were seen, along with a high
coefficient of variation (i.e. 254.94% for AN and 325.96% for E. coli).
The coefficient of variation (CV) can be defined as a measure of sta-
tistical dispersion pertaining to the data. For a given data set, it is the
mean normalised standard deviation (CV %) that can be computed as
(standard deviation/mean)× 100. The existence of large disparity in
the parameters’ concentrations can be attributed to the types (non-point
and point) and nature of sources that have been distributed in the river
basin’s wide geographical area. During the course, the river flows
through different townships, and many tributaries and wastewater
drains pouring large quantities of untreated wastewater into the river’s
main channel. A coefficient of variation in the range of 3.08% and
325.96% was seen with the parameters. Such variability that exists
amongst the samples could be due to large geographical variations in

climate as well as seasonal effects pertaining to the study region. For
the various sampling sites, a spatial and significant variation was seen
in terms of Johor River’s turbidity, which varied from 0.2 to 343 NTU.
It was higher, which could because of the mixing of industrial effluents
and domestic sewerage water in Johor River. The rise in turbidity near
downstream sites can be attributed to settling factors and flow

Table 1
Input parameters used in previous studies for the ANN model.

Author(s) and year Input variable Location(s)

Rabia (Koklu, 2006) BOD, Temp, Water discharge, NO2-N, NO3-N N/A
Kuo et al. (Kuo et al., 2007) pH, Chl-a, NH4N, No3N, temp, month Te-Chi Reservoir, Taiwan
Ying et al. (Zhao et al., 2007) Turbidity, Temp, pH, Hardness, Alkalinity, Chloride, NH4-N, NO2-N Yuqiao reservoir, China
Palani et al. (Palani et al., 2008) DO, Chl-a, temp Singapore coastal, Singapore
Zaqoot et al. (Zaqoot et al., 2009) Conductivity, Turbidity, Temp, PH, Wind speed Mediterranean Sea along Gaza, Palestine
Singh et al. (Singh et al., 2009) pH, TS, T-AlK, T-Hard, CL, PO4, K, Na, NH4N, No3N, COD Gomti, India

Table 2
Basic statistical analysis for input parameters.

Unit Mean Minimum Maximum SD CV

SN01
TEMP o C 27.03 24.08 30.33 0.83 3.08
COND μS 55.42 32.00 92.00 13.82 24.93
SAL ppt 0.64 0.01 2.93 0.36 56.00
TUR NTU 0.03 0.01 0.20 0.05 152.38
NO3 mg/l 163.50 15.50 775.00 130.61 79.88
CL mg/l 5.27 1.00 18.00 2.49 47.16
PO4 mg/l 0.04 0.01 1.08 0.12 283.32
FE mg/l 4.61 1.00 10.30 1.74 37.63
K mg/l 0.87 0.10 2.40 0.44 50.59
MG mg/l 3.13 1.22 11.54 1.42 45.18
NA mg/l 0.87 0.08 2.32 0.44 51.20
E-COLI cfu/100ml 3844.98 40.00 48000.00 6377.64 165.87
SN02
TEMP o C 27.16 24.08 29.82 1.11 4.10
COND μS 62.64 28.00 300.00 38.78 61.91
SAL ppt 0.02 0.01 0.07 0.01 54.16
TUR NTU 127.79 30.70 370.00 77.64 60.76
NO3 mg/l 0.73 0.12 5.55 0.69 93.53
CL mg/l 5.66 1.00 24.00 3.28 57.89
PO4 mg/l 0.07 0.01 0.66 0.12 159.91
FE mg/l 0.82 0.09 2.02 0.48 58.85
K mg/l 4.63 0.90 7.80 1.56 33.76
MG mg/l 0.80 0.10 1.40 0.33 40.69
NA mg/l 3.27 1.40 26.70 3.33 101.77
E-COLI cfu/100ml 2564.82 20.00 22000.00 3802.25 148.25
SN03
TEMP o C 26.14 23 31.93 1.38 5.07
COND μS 54.16 26.07 373.00 45.62 84.24
SAL ppt 9.56 0.01 61.00 20.43 213.64
TUR NTU 113.33 0.01 820.00 139.73 123.29
NO3 mg/l 11.55 0.00 133.00 27.26 236.03
CL mg/l 5.43 0.06 20.00 2.78 51.13
PO4 mg/l 0.09 0.00 1.02 0.22 233.34
FE mg/l 1.21 0.15 5.60 1.35 111.53
K mg/l 3.87 0.40 7.00 1.66 42.84
MG mg/l 1.03 0.20 5.20 0.82 79.40
NA mg/l 3.23 1.00 20.80 2.69 83.17
E-COLI cfu/100ml 3498.07 0.00 86000.00 11402.45 325.96
SN04
TEMP o C 27.43 24.58 29.78 1.10 4.02
COND μS 64.54 37.80 186.00 28.93 44.82
SAL ppt 0.02 0.01 0.07 0.01 64.09
TUR NTU 104.31 2.00 343.00 77.09 73.90
NO3 mg/l 0.66 0.06 3.22 0.40 61.13
CL mg/l 7.32 2.00 28.00 5.60 76.50
PO4 mg/l 0.08 0.01 0.99 0.21 249.18
FE mg/l 0.68 0.03 2.02 0.48 71.03
K mg/l 4.03 0.40 6.40 1.22 30.30
MG mg/l 0.94 0.20 2.90 0.54 57.05
NA mg/l 4.15 1.60 24.00 3.79 91.28
E-COLI cfu/100ml 4950.04 0.00 41000.00 7419.36 149.88
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turbulences. At downstream sites, the observed trend of turbidity, i.e.
SN02, SN03 and SN04, was seen to support the above-mentioned hy-
pothesis. Comparable patterns pertaining to spatial variations in tur-
bidity were reported by (Khadse et al., 2007) when investigating
Kanhan River’s water quality. Amongst the sampling sites, the con-
ductivity of the Johor River water was found to be considerably dif-
ferent, in which the mean ranged from 54 to 64 μS, although least
significant difference was between SN01 and SN03. The high con-
ductivity at SN04 and SN02 sites signify sewerage mixing into the river
water. The dilution of industrial and urban runoffs could be attributed
to the lower conductivity seen in the downstream water. Nitrate is
considered to be a crucial parameter of river water that could be an
indicator for the pollution status and anthropogenic load in river water.

The mean of nitrate ranged from 0.66 to 163.5 mg/l for Johor River.
At the site wherein urban runoff mixing was noticed, NO3 was seen to
be the maximum. It is interesting to note that in the downstream non-
point pollution sites, lower NO3 was seen. The concentration of
chloride in water was deemed not to be harmful. A higher concentra-
tion of chloride found in freshwater signified that pollutants are pre-
sent. Moreover, in Johor River, the chloride level fell in the range of
5.27 to 7.37mg/l. Nonetheless, at various sampling sites, a clear trend
was not seen with chloride concentration in terms of the non-point or
point pollution sites. The mixing of industrial effluents or urban was-
tewater in the river water is signified by higher levels of chloride
content at SN04.

pH of water indicates alkaline and acidic conditions. DOE (DOE,
2007) suggested that pH for water in the range of 6.5–8.5 can be em-
ployed for any purposes in that respect; the ranges showed that Johor
River had moderately alkaline water. The change in mean pH ranged
from 6.22 to 6.36 at various locations. At some sites, higher pH could be
a result of carbonate and bicarbonates of magnesium and calcium in
water. The key source pertaining to such chemicals include industrial
wastewater or urban runoff. SS further signifies the river water’s sali-
nity behaviour. The mean SS content pertaining to river water was
found in the range of 72.61 to 91.01mg/l. The chemical and biological
oxygen demand increase in tandem with higher SS level in the water
system, which ultimately results in depletion of the dissolved oxygen
level in water. In water, SS stems from natural sources, industrial
wastewater, urban runoff, sewage and chemicals employed in the water
treatment process.

For the current neural network modelling, the second assessment of
selecting the input parameters is done by considering a statistical cor-
relation analysis pertaining to the field data. Calculation of the corre-
lation coefficient existing between the input and output parameters was
done and listed in Table 4.

Based on the table, pH was clearly seen to be inversely associated
with water temperature (r= –0.306) as well as potassium (r= –0.425).

We performed an experiment by taking water quality variables that
were accounted along with the parameters mentioned above pertaining
to various models to realise the optimal predictive model as well as
reduce the monitoring cost by accounting for fewer input parameters.

3.6. Stopping criteria

Normally, there is a gradual decrease in the training error of AI
since the training process is on-going. Nonetheless, this minimisation of
training error does not guarantee enhancement of generalisation
ability, which gained our interest. It is not necessary that AI showing
good performance with the training set will do the same with the
testing data. Therefore, it is also sometime important to stop the
training phase at the right time before over-fitting occurs. When a
generalisation characteristic is lost by the neural network, an over-fit-
ting issue follows. However, relations between the training inputs as
well as their associated outputs to similar hidden patterns pertaining to
the unobserved data cannot be generalised. Thus, this occurs as a result
of a difficult question that asks how long a network needs to be trained.
The issue of over-fitting is usually solved by employing techniques like
weight elimination, weight decay and early stopping. Stopping criteria
is the most commonly employed method to address this issue. As noted
by numerous researchers (e.g. Singh et al. (2009); Palani et al. (2008)),
two frequently employed stopping criteria include stopping post a
specific number of runs via the complete training data (it needs to be
noted that an epoch is defined as each run that passes through the
complete training data) and stopping on reaching some low level by the
target error.

3.7. Different scenarios

Two different scenarios have been proposed in this study. The
concept behind the development of these both scenarios is based on the
spatial pattern of the input–output structure of the model. Mainly, the
reason behind proposing these scenarios is to examine the model per-
formance considering the spatial dimension of the model input. Keeping
in mind that the model output in both scenarios is the prediction values
of the AN, pH and SS, the input patterns has been changed in terms of
the number of the inputs and location of the monitored data. In order to
clarify the structure and show the difference between these two sce-
narios, an example for the structure of both scenarios to predict the AN
parameter will be presented. For scenario I, to predict AN parameter at
certain station, different twelve input parameters were used that have
been acquired at the same station. While, the structure of scenario II is
developed as, in addition to the same twelve water quality parameters
used as inputs in scenario I, the value of AN parameter that has been
acquired from the upstream station will be added.

The prediction procedure can be defined as an operation that allows
offering water quality parameter patterns for the future. This research
employs the WDT-ANFIS along with its stochastic and non-linear
modelling capabilities to design a prediction model that mirrored the
water quality parameter patterns pertaining to Johor River with regards
to the 12 input parameters (Scenario 1) cited earlier, which is re-
presented as follows:

= + + + + +

+ + + + + + −
−

WQIP

f Temp COND SAL TUR NO CI

PO Fe K Mg Na E coli

(

)

N

WDT ANFIS N N N N N N

N N N N N N

3

4 (9)

=N 1, 2, 3, 4

where WQIPN signifies the water quality index parameters pertaining to
station N, and fWDT-ANFIS(.) defines the non-linear function predictor
built via the WDT-ANFIS network. Thus, at each station, four models
were built for predicting the parameters for water quality. A majority of
the recent studies were aimed at predicting the concentrations

Table 3
Basic statistical analysis for three water quality parameters.

Unit Mean Minimum Maximum SD CV

SN01
PH – 6.39 5.49 7.83 0.45 7.07
SS mg/l 91.01 11.00 372.00 56.26 61.81
NH3-NL mg/l 0.14 0.01 1.07 0.18 129.30
SN02
PH – 6.22 5.43 7.28 0.36 5.77
SS mg/l 73.44 7.00 274.00 50.16 68.30
NH3-NL mg/l 0.10 0.01 0.45 0.11 103.81
SN03
PH – 6.36 5.67 8.41 0.48 7.59
SS mg/l 72.61 1.00 574.00 83.44 114.91
NH3-NL mg/l 0.15 0.01 2.46 0.38 254.94
SN04
PH – 6.29 5.59 8.09 0.41 6.56
SS mg/l 47.98 1.00 146.00 32.05 66.80
NH3-NL mg/l 0.15 0.01 0.83 0.20 131.79
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pertaining to the parameters of water quality at every station. Usually,
discharge via the local area from the upstream station causes an impact
on the water pollution pertaining to a downstream station (Zaqoot
et al., 2009). Therefore, in the put forward model, it was important to
consider the impact cast by water parameters at the upstream station.
Thus, the second scenario (Scenario 2) was designed to set the model
prediction at each station pertaining to the water parameters by con-
sidering the 13 input parameters. At the previous station (upstream),
the predicted WQIP could be represented by following Eq. (10). Re-
petition of this procedure involving the predicted WQIP is done for the
fourth and third stations at downstream. Fig. 5 presents a schematic
representation pertaining to the put forward networks for Scenario 2.

= + + + + +

+ + + + + + − +

+

−

WQIP

f Temp COND SAL TUR NO CI

PO Fe K Mg Na E coli WQIP

(

)

N

WDT ANFIS N N N N N N

N N N N N N pN

1

3

4 (10)

4. Results and discussion

4.1. MLP-ANN training

The construction of an ANN model normally includes three steps.
The training stage is the first step, in which the network is exposed to a
training set pertaining to the input–output patterns. The second step
involves the validation stage, in which the network’s performance is
evaluated when patterns are not ‘observed’ by the network in the
training stage. The third step includes the testing stage, in which the
network’s performance is evaluated when the unknown patterns were
not ‘observed’ during the stages of validating and training (Bowden
et al., 2005). Designing of three MLP-ANN architectures was done (one
for each parameter). The Levenberg-Marquardt back propagation al-
gorithm (LMA) is employed by all three networks in the entire training
procedure. This study employed three activation functions, namely tan-
sigmoidal (Tansig), log-sigmoidal (logsig) function and linear transfer

Table 4
Correlation coefficient between WQP and the input parameters.

PH SS NH3-NL PH SS NH3-NL PH SS NH3-NL PH SS NH3-NL

SN01 SN02 SN03 SN04
TEMP 0.316 −0.171 −0.137 −0.425 0.361 0.014 −0.022 0.090 0.083 −0.295 0.154 −0.076
COND −0.029 0.301 0.208 −0.113 0.061 0.144 0.216 0.002 −0.069 −0.290 0.083 0.094
NO3 0.228 0.131 0.383 −0.364 −0.101 0.067 −0.183 −0.279 0.201 −0.264 −0.196 0.054
SAL 0.202 −0.043 0.393 0.835 −0.118 −0.115 0.844 −0.071 −0.028 0.757 −0.147 −0.073
TURB −0.167 0.766 0.137 0.071 0.061 0.000 −0.079 −0.200 0.191 −0.008 0.131 0.221
Cl −0.114 0.354 0.411 −0.063 0.287 0.084 0.146 −0.076 −0.316 −0.302 0.067 0.245
PO4 0.181 −0.148 0.065 0.025 0.121 −0.083 0.077 −0.114 0.454 0.088 0.052 0.569
K −0.306 0.184 0.253 −0.005 0.014 −0.108 −0.012 0.039 0.018 0.325 0.013 −0.248
MG 0.038 0.191 0.376 0.247 −0.023 0.152 0.115 −0.104 −0.192 0.020 −0.074 0.142
NA 0.127 0.088 0.400 0.106 0.283 0.077 −0.027 0.104 0.269 −0.268 0.176 0.025
FE 0.023 −0.080 −0.038 −0.165 0.143 −0.001 0.152 −0.045 0.017 −0.345 −0.024 0.106
E-coli −0.085 0.315 0.007 0.142 0.024 0.014 0.223 −0.095 0.036 −0.042 0.143 0.367

Fig. 5. Schematic representation of the proposed networks for Scenario 2.
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function (purelin). After initialising the network weights and biases
during the training process, iterative adjustments of the weights and
biases pertaining to the network were carried out to decrease the net-
work performance function pertaining to mean square error (MSE) – the
average squared error between the target outputs and the network
outputs.

We introduced different values of learning rate (lr) to the networks
in a bid to achieve the optimum result pertaining to this study. For back
propagation learning algorithm, the learning rate is important as it
helps determine the level of weight changes. However, since the
learning process tends to slow down when smaller learning rate values
are employed for training, it is not a favoured choice. Employing larger
learning rates values for training could lead to network oscillation in
the weight space. One approach to enhance the gradient descent
method is by introducing an additional momentum parameter (mc) that
facilitates larger learning rates leading to faster convergence while
decreasing the oscillation tendency (Rumelhart et al., 1986). The mo-
mentum term is introduced so that the next weight changes are simi-
larly aligned to the same direction as the previous one, which allows
minimising the oscillation impact of larger learning rates. Although
there are certain systematic approaches to simultaneously choose the
learning rate and momentum, the best values pertaining to these
learning parameters are normally selected based on experimentation.
Since any value falling between 0 and 1 can be accounted by the
learning rate and the momentum, it becomes almost impossible to
perform an exhaustive search to detect the best combinations per-
taining to these training parameters. In this research paper, we eval-
uated different momentum and learning rates pertaining to both net-
works; in real practice, 0.9 and 0.95 were selected as momentum and
optimum learning rate pertaining to SS, AN and pH models, respec-
tively.

4.2. Optimisations of the neurons number

The number of neurons in the hidden layer is the key characteristic
pertaining to AI technique. The network fails to model the complex data
that could lead to poor fitting if the number of neurons employed is
insufficient. On the flip side, the training time could become un-
reasonably long as well as the network may also over fit the data if
there are too many neurons employed. In this paper, to investigate the
best performance, various MLP-ANN architectures were employed. In
fact, a formal and/or mathematical approach does not exist, which al-
lows determination of appropriate ‘optimal set’ pertaining to neural
network’s key parameters. Thus, the trial-and-error method was se-
lected to perform this task. Randomisation of the hidden layer’s neurons
was done from N=1 to 20 neurons. In the hidden layer, the best
numbers of nodes are those that provide the lowest error (Lek et al.,
1996). Based on two performance indices, determination of the op-
timum number of neurons was done. The root-mean-square error
(RMSE) value pertaining to the prediction error is the first index, while
the value of the maximum error is the second index. To get both indices,
the ANN model was evaluated by considering the WQP data between
1998 and 2007. When building such a predicting model that employs
the neural network, the model could do well during the training period

and could give a higher level of error when assessment was done during
either the testing or validation period. Based on this study, these per-
formance indices were employed to ensure that the put forward model
would offer consistent accuracy levels during all periods. As the per-
formance indicator for the put forward model, the key benefit of using
these two statistical indices is to ensure that the highest error falls
within the acceptable error range for the forecasting model when the
performance is being evaluated. This is done when RMSE is employed
and making sure that the summation of the error distribution is not high
in the validation period. Consequently, employing both indices ensures
consistent level of errors and offers high potential to maintain the same
error level while evaluating the model for unseen data during the
testing period.

When the number of hidden neurons to the network is varied, it has
a clear impact to a considerable degree on the prediction performance.
It clearly demonstrates that there is a rise in prediction performance
with increase in the number of hidden neurons (from 1 to 18), along
with subsequent decrease in RMSE and maximum error pertaining to all
parameters. However, a drop in prediction performance occurred when
hidden neurons were added further (19 to 20) to the network. For in-
stance, it can be seen that the best combination pertaining to the put
forward statistical indices to examine the predicting model for the pH
was when 18 neurons with RMSE 0.15 were associated with the ANN
architecture and a maximum error as 3.22%. The best combination
pertaining to the put forward statistical indices to examine the pre-
dicting model for the SS was when 17 neurons with RMSE 0.30 were
associated with the ANN architecture and a maximum error of 3.46%.
Table 5 lists out the optimal numbers of neurons pertaining to the re-
maining parameters.

4.3. Water quality prediction model of MLP-ANN

The MLP-ANN model for the estimation of the 6 parameters of water
quality (as the output), which are SS, AN and pH, was evaluated in this
section. Fig. 6 depicts the measured and estimated parameters of water
quality for the most excellent network, which provided the most precise
estimation. On the whole, the predictive capability of this model was
fairly good for each of the parameters of the water quality in the
training duration, though less accurate when the validation and testing
stages were carried out. The findings showed that it was challenging to
develop a consistent model using the MLP-ANN models due to high
variations and intrinsic non-linear correlation among the parameters of
the water quality because of the probabilistic nature and chemical
procedure. Additionally, the MLP-ANN models encountered delayed
convergence during the training because of the necessity of compara-
tively a huge amount of hidden neurons. Also, several researchers ob-
served that these models failed to acquire values lying outside the scope
of values included in the calibration data of MLP-ANN (boundary va-
lues) (Campolo et al., 1999; DAWSON and WILBY, 1998; Hsu et al.,
1995; Karunanithi et al., 1994; MINNS and HALL, 1996). This con-
straint, arising chiefly due to the application of a logistic function to
translate the output of the model, makes these models inappropriate for
several applications.

Alternatively, the RBF-ANN (Radial Basis Function Network) is
commonly employed for strict interpolation issues in space with mul-
tiple dimensions, which has equivalent abilities as the MLP-ANN in
solving problems related to function estimations (Park and Sandberg,
1993). There are chiefly 2 benefits of the RBF-ANN: (a) network
training in shorter duration in comparison to MLP-ANN, and (b) best
solution estimation without managing the local minimums. In addition,
RBF-ANN works as a local network in contrast to the feed-forward
networks which are global mapping networks. Also, RBF-ANN employs
one processing units set, and every unit is most accessible to a local area
of the input region. Due to this, RBFNs are employed more recently as a
substitute NN model in function estimation applications and prediction
of time series (Sheta and De Jong, 2001; Yu et al., 2008). Thus, the

Table 5
ANN architecture for each parameter.

Parameter No. of neuron RMSE Maximum error (%) TFHL TFOL TA

pH 18 0.15 3.22 TS PL LMA
SS 17 0.30 3.46 LS PL LMA
AN 17 0.26 3.12 TS PL LMA

TFHL: Transfer function between input layer and hidden layer; TFOL: Transfer
function between hidden layer and output layer; TA: Training algorithm; LS:
Log sigmoid; TS: Tan sigmoid; PL: Pure-line; LMA: Levenberg–Marquardt al-
gorithm.
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following section describes the attempt to get familiar with RBF-ANN
suitability to be used as a model for predicting the parameters of water
quality.

4.4. Sensitivity analysis

To assess the input variables, impact on the model, 3 assessment
methods were used. First method was based on dividing the NN con-
nection weights so as to establish the relative significance of every input

Fig. 6. Performance of the MLP-ANN model: A comparison between the predicted and observed values.

A. Najah Ahmed, et al. Journal of Hydrology 578 (2019) 124084

10



variable in the network (Stern and Garson, 1999). In this research, the
recommended network comprises 12 environmental variables. Pre-
suming the connection weights from the input nodes to the hidden
nodes exhibit the relative predictive significance of the independent
parameter, the significance of every input parameter can be articulated
as follows:
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where Ij represents the relative significance of jth input variable on the
output variable, Ni and Nh denote the quantities of input and hidden
neurons, correspondingly, and W represents the connection weight.
Also, the superscripts ‘i’, ‘h’ and ‘o’ signify the input, hidden and output
levels, correspondingly, while the subscripts ‘k’, ‘m’ and ‘n’ signify the
input, hidden and output neurons, correspondingly. The first method of
evaluation was to assess the relative significance of every input variable
as calculated by Eq. (11) and illustrated in Fig. 7. The relative sig-
nificance demonstrates the importance of a variable in comparison to
the other variables belonging to the model. Even though the network
did not essentially signify physical sense using weights, it indicates that
all the variables had intense effects on the estimation of all output
variables, in which the estimator contribution varied from 5 to 14%.
Apparently, the most useful inputs were considered to be those that
involved oxygen containing nitrate (NO3) and phosphate (PO4). Con-
versely, pH and Temp were discovered to be the least useful para-
meters. Additionally, MG proved to be providing the greatest con-
tribution for the recommended model for AN. For pH, it was apparent
that the most useful input was Temp.

4.5. Water quality prediction model of anfis

As a matter of fact, among the difficulties in ANFIS-based modelling
is establishing its variables for optimal learning (i.e. the membership
function number and step size’s initial value) before training, in a way
that the optimal training is achieved. Two techniques have been pro-
posed by several researchers for establishing these variables in ANFIS:
optimisation techniques (Hassanain et al., 2004) and the trial-and-error
approach (Kim et al., 2002). While determining the variables for op-
timal learning could be ensured by the optimisation algorithms (i.e.
derivative based or derivative free optimisation), this alternative has a
downside of being computationally costly. Conversely, the trial-and-
error technique has been confirmed to be effective in case the target

root mean square error can be realised. This technique is also ad-
vantageous as it yields a knowledge rule-base having a lower possibility
of surpassing the data set of training in comparison to the optimisation
technique. Thus, this research did not include the optimisation tech-
nique and established the variables for optimal learning of ANFIS
through the trial-and-error technique.

For every parameter related to the water quality, this study em-
ployed the architectures proposed in the preceding section, in which 12
inputs were utilised to estimate the WQIP. It is noteworthy that there is
no systematic technique to establish the optimal quantity of MFs. The
optimal quantity of MFs is generally established inductively and vali-
dated empirically. Thus, the quantity of MFs was selected using the
trial-and-error method. Meanwhile, it is to be observed that this study
had tested 4 kinds of membership functions: (a) triangular, (b) gaus-
sian, (c) trapezoidal, and (d) bell-shaped, to compose the fuzzy num-
bers. Following several trials, the outcome revealed a distributed
membership function having bell-shaped nature in comparison to
others which had acquired the minimal relative error. Table 6 de-
monstrates the kinds and quantity of MFs that were implemented in this
study to develop the modules.

For demonstrating the performance of the suggested ANFIS model,
an evaluation of predicted against observed parameters of water quality
during training, validation and experimentation phases is displayed in
the Fig. 8. It is apparent that the suggested ANFIS model procedure
provided the estimated variables that mimicked the dynamics (pattern)
in the noted values besides those boundary values measured during this
time.

4.6. Water quality prediction model of WDT-ANFIS

The above findings were obtained with the general assumption that
the mined data must be precise and reliable. Nevertheless, the data
acquired from the study, test, and simulation procedures may be

Fig. 7. Relative importance of each input parameter.

Table 6
The number and types of MFs for each module.

Parameter AFNIS Module

MFs (Type) MFs (Number)

PH gbellmf 3 4
SS gbellmf 4
NH3-NL gbellmf 3 4 4
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corrupted by noise because of objective and/or subjective errors (Li and
Shue, 2004). For instance, the errors arising in the experiment may be
caused by measuring, recording, reading, or external scenarios; the
errors from simulation might cover uncertainties of the model and
parameters, as well as computational errors. As these noisy signals
possibly distort the data mining outcomes, it is necessary to eliminate

them (i.e. signal de-noising process) before the use of any initial data.
Thus, an augmented WDT-ANFIS based on historical information for
WQPP will be presented.

Training and cross-validation processes of the model of WDT-ANFIS
were carried out to reduce the Root Mean Square Error among the
output as well as predicted responses. The WDT-ANFIS model

Fig. 8. Performance of the ANFIS model: A comparison between the predicted and observed values.
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outperformed the ANFIS model and provided improvement in estima-
tion accuracy of all the variables, while the ANFIS model performed
inefficiently. As the noise intensity increased, it was obvious that WQP
possibly had more accurate estimation values due to de-noising of data.
This suggests the WDT superiority in data cleaning. Despite the oc-
currence of errors during stages of training, validation and

experimentation, which were regarded as considerably high in com-
parison to the training and cross-validation stages, it had obtained a
high precision for all variables. The findings displayed in Fig. 9 de-
monstrate that the WDT-ANFIS model could be regarded as a suitable
technique for modelling for estimation like WQP.

Fig. 9. Performance of the WDT-ANFIS model: A comparison between the predicted and observed values.
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4.7. Comparative analysis

The models introduced in prior discussion were all compared for the
purpose of providing precise predictions for each water-quality para-
meter at Johor River. Similar findings were achieved in determining
models for predicting suspended solids concentrations (SS), wherein
WDT-ANFIS forecast SS with comparatively less accuracy, in which
errors for most records were below 10%. Peak SS values were more
closely approximated using WDT-ANFIS in comparison to that attained
using other techniques, as depicted in Fig. 10. The numbers of in-
accurate SS forecasts decreased meaningfully using WDT-ANFIS. The
use of physics-based distributed processing in complex computer soft-
ware is frequently problematic, owing to the usage of idealised sedi-
mentation components or the requirement of large volumes of detailed
temporal and spatial data on the environment which is not always
available (Cigizoglu, 2004). It should be noted that AI approaches to
determining suspended-sediment data estimations remain sparse in the
relevant literature (Abrahart and White, 2001).

The success attained in modelling dynamic systems implies that this
strategy may well provide an efficient and productive means for si-
mulating complex suspended-sediment processes in rivers, under con-
ditions where precise knowledge of internal sub-processes is not ne-
cessary. Each proposed model in this study was constructed on the
assumption that land cover/use would remain unchanged during this

research. However, land cover/use remains an important factor in the
production and transport of sediments, along with other factors. More
precise predictions of suspended sediments may be attained by in-
cluding variables that represent land cover/use status into the scheme.
We are planning such analytical studies soon enough. In conclusion,
this research establishes WDT as an appropriate method, along with
classical ANFIS, for modelling suspended sediments in river environ-
ments. It is therefore worth considering the use of WDT-ANFIS ap-
proaches in such analysis, given the findings of studies regarding the
physics embedded in ANFIS structures.

With regards to pH, Fig. 11 depicts comparisons between ANFIS and
other models’ performances, based on the test data set. In the figure, it
is clear that ANFIS performance exceeds that of the two ANN methods.
Furthermore, the effort reveals the challenges in devising reliable
schemes based on MLP-ANN RBF-ANN models, as a result of the high
variances as well as the inherent non-linear associations among the
water-quality parameters, as a result of the stochastic quality and
chemical-based process. Furthermore, as depicted in Fig. 10, the find-
ings show that WDT-ANFIS-based modules outperform ANFIS and also
have the ability to improve predictive accuracy for pH, albeit for MAE
with comparatively lesser accuracy, whereby errors for most records
were below 7%. Otherwise, inefficient executions were observed based
on the ANFIS module, wherein most errors were above 15%. Clearly,
given increases in noise intensities, WQP offers more precise

Fig. 10. Comparison between the predicted SS versus the observed SS utilizing different techniques.
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predictions from data de-noised with WDT than data without such de-
noising. This suggests the advantage of using WDT to clean the data.

It is fact that the training process for big data using any of AI models
is both time- consuming and computation- and memory-intensive
especially when several number of model’ inputs variables is used. The
computer specification that have been used to run models are Intel
Processor Core i7 (12M Cache, up to 4.60 GHz) and Ram 16 Gb. It is
fact that in our study the data used is not big data to be considered as
problem to the computational memory. However, due to the fact that
the number of the model’ input variables is relatively big (twelve or
thirteen based on the structure of scenario I and scenario II, respec-
tively), the training process is slightly time-consuming to achieve the
performance goal. Table 7 summarize the training time for each models
in seconds where it is noticeable that the ANFIS and WDT-ANFIS
models consuming more time than ANN models (MLP and RBF) but it is

still minimal.

4.8. Scenarios

The comparatively low correlation among forecast and observed
values during test phases was perhaps a result of the non-homogenous
nature of water-quality parameters. Moreover, Ying et al. (Zhao et al.,
2007) demonstrated that the selection of influential factors (namely,
input parameters) has a critical role as these factors greatly affect
forecasts. Clearly, the low correlations in this research can be attributed
to the realisation that its input parameters had not included every re-
levant parameter. Furthermore, pollution levels at downstream stations
were associated with discharge from upstream stations. To overcome
this difficulty, the researchers applied another approach (i.e. Scenario
2), such that higher levels of accuracy could be attained. This strategy is
associated with the prediction of each water-quality parameter, given
the actual values measured at upstream stations as model inputs, as
described by Eq. (12). For a most appropriate analysis, the researchers
implemented an accuracy improvement (AI) index for the correlational
coefficient statistical index, in order to determine the significance of
Scenario 2 as against Scenario 1, described as follows:

Fig. 11. Comparison between the predicted pH versus the observed pH utilising different techniques.

Table 7
The running time (seconds) of training process for each model.

Model MLP RBF ANFIS WDT-ANFIS

pH 51 44 67 78
SS 53 46 71 81
AN 49 43 64 75
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= − ∗AI CC CC
CC

(%) ( ) 100Scen Scen

Scen

2 1

2 (12)

Wherein CCScen2 denotes the coefficient of correlation for Scenario
2, whereas CCScen1 denotes a similar statistical index for Scenario 1.
From Table 8, it is clear that Scenario 2 is more satisfactory than Sce-
nario 1, with meaningful improvements observed in every station,
which ranged from 0.5% to 5%. Predictive accuracy was meaningfully
enhanced after introducing Scenario 2 for every station. As in the case
for pH, Scenario 2 showed more satisfactory performance than Scenario
2, with meaningful improvements observed in AI, which ranged from
3% in Station 2 to 5% in Station 3.

Conversely, less improvement was gained with AN, wherein AI was
equal to 0.5 in Stations 1 and 3. Even though it is clear that Scenario 2
was less efficient with AN, accuracy does increase by 2% once it is
applied to Station 3. Furthermore, the findings indicate that Scenario 2
not only showed improved accuracy for certain parameters, but this
particular model had the ability to capture temporal patterns in water-
quality parameters. This enabled the scheme to apply meaningful im-
provements to station scenarios.

4.9. Model validation

Models must be verified whenever resulting outputs and observed
values are near enough to satisfy all validation criteria (Palani et al.,
2008). To investigate the effectiveness of this proposed scheme, vali-
dation of the enhanced wavelet de-noising method using the Neuro-
Fuzzy Inference System (WDT-ANFIS), in accordance with field mea-
surements collected from 2009 to 2010, is therefore applied. The scatter
plots among the forecast and observed values for all 5 selected para-
meters for water quality are depicted in Fig. 12. Clearly, the majority of
forecast water-quality parameters had closely approximated actual
observations. As well, R2 must be as near 1 as possible, with values that
exceed 0.9 implying very satisfactory model execution, values from 0.6
to 0.9 implying fairly good execution, and values below 0.5 indicating
unsatisfactory execution. Based on these criteria, the WDT-ANFIS
model’s ability to predict both pH and SS concentrations is very sa-
tisfactory (in that R2 values are at least 0.9) for every station but for AN,
wherein models showed merely decent performances (in that R2 values
were below 0.9) for Station 3. Based on these findings, WDT-ANFIS can
be said to demonstrate good predictive performance. For predictions of
water-quality parameters using AI, other researchers have advanced
network modelling strategies that apply differing types of AI as well as
input datasets. Moatar et al. (Moatar et al., 1999) applied solar radia-
tion and discharge levels in predictions of pH, with an R2 value equal to
0.86. For predictions of AN, WDT-ANFIS predictive performance in this
research managed better in comparison (R2 ranging from 0.88 to 0.96)
with ANN predictive performance. Cigizoglu (2004) utilised ANN
models that were trained and then tested with daily flows, for pre-
dicting SS concentrations a day ahead, with R2 values ranging from
0.75 to 0.81 (with upstream flows as inputs). A comparable prediction
for SS was similarly claimed by Zhu et al. (Zhao et al., 2007). For
predictions of SS, the WDT-ANFIS predictive performance in this re-
search managed better in comparison (R2 ranging from 0.91 to 0.95) to
previous studies. The proposed scheme demonstrated efficiency in its
predictions of the concentrations of water-quality parameters for the

Johor River, which corresponds to the findings of other research. The
findings also show that the proposed scheme is a useful alternative that
offers a comparatively fast algorithm, featuring decent theoretical
properties for predicting water-quality parameters, which could be
extended to predictions of other water-quality parameters.

5. Conclusion

The study proposes the use of enhanced Wavelet De-noising
Techniques using Neuro-Fuzzy Inference Systems (WDT-ANFIS) ac-
cording to historical water-quality parametric data. The effectiveness of
each model was examined in order to predict key parameters that could
be affected as a result of urbanisation surrounding rivers. This area of
research accords with the available secondary data for each water-
quality parameter of Johor River. The parameters comprise ammo-
niacal nitrogen (AN), suspended solid (SS), and pH. Dual scenarios were
presented: the first (Scenario 1) was designed to confirm prediction
models for water-quality parameters at each stations according to 12
input parameters, whereas the second (Scenario 2) is designed to con-
firm prediction models for water-quality parameters according to 12
input parameters, as well as the parametric values from prior upstream
stations. In evaluating the impact of input parameters on this scheme,
validation of enhanced Wavelet De-noising Techniques using Neuro-
Fuzzy Inference Systems (WDT-ANFIS), in accordance with measure-
ments taken from 2009 to 2010, was thereby employed. The findings
showed the challenge of determining reliable schemes based on MLP-
ANN models, from the high variances as well as inherent non-linear
associations among the water-quality parameters that emerge as a re-
sult of the stochastic quality and chemical-based process. Furthermore,
MLP-ANN was subject to slow convergence during training, as a result
of the requirement for comparatively large numbers of hidden neurons.
In the example of RBF-ANN, its predictive capability for water-quality
parameters in training phases was decent, but showed less precision
during validation and test phases. The findings indicated that ANFIS
determined solutions faster than alternative MLP-ANN and RBF-ANN
methods and is the most precise and reliable method for processing
large volumes of non-linear as well as non-parametric data. Of note is
the performance of the WDT-ANFIS scheme, which exceeded that of
ANFIS and improved predictive accuracy for every quality parameter,
in that this model achieves higher prediction accuracy overall.
Generally, WDT-ANFIS can therefore be seen as having the best net-
work architecture, since it outperformed ANFIS. The findings indicate
that WDT-ANFIS not only offered a means to improve accuracy but it
also features the ability to capture temporal patterns in water quality.
This enables it to provide meaningful improvements in the generation
of forecasts. Consequently, the ANFIS model appears more capable at
capturing the more complex and dynamic processes that are hidden
within the data for WQP, following enhancement with WDT. In com-
parisons between Scenarios 1 and 2, Scenario 2 achieved higher accu-
racy in terms of simulating the patterns and magnitudes for every
water-quality parameter, at every station. The suggested WDT-ANFIS
model in Scenario 2 gave predictions for water-quality parameters that
ably mimicked patterns (dynamics) in recorded values, aside from ex-
treme outliers observed within this period. Furthermore, validation of
WDT-ANFIS, according to measurements collected from 2009 to 2010,
demonstrated that WDT-ANFIS performed well in predicting both pH
and SS concentrations (with R2 values of at least 0.9) for every station
but for AN, wherein models still showed decent performances (with R2

values lower than 0.9) for Station 3. Since forecasts of water quality are
readily influenced by external environments, the acquired model would
at times generate findings that deviated much from the observed values.
In general, the methodology of the proposed models development for
water quality has proved its effectiveness. However, it should be
highlighted that there are no structured methods today to identify
which network structure that can best in predicting water quality
parameters. Moreover, the optimal selection of the hyper parameters

Table 8
A summary of correlation coefficients for Scenario 1, Scenario 2 and the AI %.

Model SNO2 SNO3 SNO4 AI (%)

Scen1 Scen2 Scen1 Scen2 Scen1 Scen2 SNO2 SNO3 SNO4

pH 0.95 0.98 0.94 0.98 0.93 0.98 3.1 4.1 5.1
SS 0.96 0.97 0.97 0.98 0.97 0.98 1.1 1 1
AN 0.96 0.97 0.96 0.97 0.95 0.97 0.5 0.5 2
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still requires to be achieved by augmenting the AI model with other
advanced meta-heuristic optimization algorithms. Overall, this study
integrates several analytical and modelling techniques that could be-
come useful to institutions that are committed to river basin manage-
ment within Malaysia. Furthermore, the approach utilised in this re-
search could lay ground for better decision-making that assists policy
makers in maintaining and improving river basin management.
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