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Abstract— This paper presents an enhanced machine learning 

based state of charge (SOC) estimation method for a lithium-ion 

battery using a deep recurrent neural network (DRNN) 

algorithm. DRNN is suitable for SOC evaluation due to strong 

computation intelligence and self-learning capabilities. 

Nevertheless, the performance of DRNN is constrained due to the 

training accuracy and duration which entirely depends on the 

appropriate selection of hyper-parameters including hidden layer 

and hidden neurons. Therefore, firefly algorithm (FA) is 

employed to find the optimal number for hyper-parameters of 

DRNN networks. The optimized DRNN based FA algorithm for 

SOC estimation does not require extensive knowledge about 

battery chemistry, electrochemical battery model and added 

filter, rather only needs battery test bench to measure current 

and voltage. The developed model is tested using two different 

types of lithium-ion batteries namely lithium nickel manganese 

cobalt oxide (LiNiMnCoO2) and lithium nickel cobalt aluminum 

oxide (LiNiCoAlO2). The proposed model is validated by two 

experimental tests; one with static discharge test and other with 

pulse discharge test at room temperature. The experimental 

results indicate the superiority of the DRNN based FA method in 

comparison with the back-propagation neural network (BPNN) 

and radial basis function neural network (RBFNN). 

Index Terms— State of charge, Lithium-ion battery, Deep 

recurrent neural network, Levenberg-Marquardt algorithm 

Firefly algorithm 

I. INTRODUCTION 

 arbon emission has significant measurable effects on the 

environment such as temperature rise, ice melting, 

extreme weather events like hurricanes and lightning. The 

applications of energy storage technologies have received 

massive attention due to their huge contribution in reducing 

carbon emissions. The lithium-ion battery has the lucrative 

characteristics of fast charging, high voltage, high energy 

density, and long life cycle and hence it is widely used in the 

automotive industry [1]. However, lithium-ion battery is still 

suffering from some problems such as power electronics 

controller interface, accurate charge estimation, temperature  

 

 

 
 

 

 

 

 

 

 

control, power management, cost, and safety concern [2]. 

Hence, the advanced researches are concerned greatly in 

evaluating the charge as well as in controlling and converting 

power effectively in electric vehicle (EV) applications [3].  

Battery management system (BMS) does the necessary 

operations to run EV properly such as accurate state of charge 

(SOC), state of health (SOH) estimation, efficient control of 

charging and over discharging, thermal management, safety, 

and protection. SOC is a vital component in BMS which is 

defined as the remaining charge presented inside a battery cell. 

SOC is highly explored research topic to evaluate the lithium-

ion battery performance. Accurate estimation of SOC is of 

great significance to prolong battery life time as well as to 

protect the battery from being overcharged. Nevertheless, 

SOC is an internal parameter of a lithium-ion battery which 

not only depends on battery chemistry, chemical reactions but 

also on numerous issues such as aging, temperatures. Hence, 

further exploration is required to develop an advanced SOC 

estimation algorithm under various uncertainties.   

A. Related Works 

SOC estimation methods can be categorized into three 

groups; conventional method, model-based method, and 

machine learning method. Open circuit voltage (OCV) [4]  

and coulomb counting (CC) [5] techniques are the 

conventional estimation approaches which use voltage and 

discharge current directly to estimate SOC. Nevertheless, the 

online operation cannot be executed using OCV method. CC 

suffers from the accumulation of measurement error due to the 

current integration. In order to overcome the above challenges, 

model-based SOC estimation methods have been introduced. 

Kalman Filter (KF) [6], Particle filter (PF) [7] and H∞ Filter 

[8] are the commonly used model-based approaches and have 

become popular due to the strong capability to handle noises 

in the measured values. Nonetheless, KF does not deliver 

satisfactory results in a highly nonlinear system. Moreover, 

the KF accuracy is highly depends on battery model 

parameters. Particle filter (PF) based SOC estimation provides 

high accuracy with fast estimation speed. Nevertheless, the PF 

method requires a complex mathematical tool. H∞ Filter based 

SOC estimation has reasonable accuracy and fast 

computational cost. However, the accuracy of H∞ Filter could 
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diverge due to the aging, hysteresis and temperature effects. 

Machine learning methods such as artificial neural network 

(ANN) [9], fuzzy logic (FL) [10] and support vector machine 

(SVM) [11] have received huge interest in SOC estimation in 

recent years due to their strong computation intelligence 

capabilities. Artificial neural network (ANN) is a popular 

subclass of machine learning method that can examine SOC 

accurately considering lithium-ion battery non-linear 

characteristics, aging, noises, and temperature effects. 

Nonetheless, ANN needs a vast amount of data, storage device 

and has a long training duration. SVM has accurate and fast 

estimation but suffers from the high complex computation. 

 

B. Major Contributions 

In this research, we propose an improved machine learning 

algorithm for SOC estimation using a deep recurrent neural 

network (DRNN) algorithm. In particular, an optimized 

DRNN based SOC estimation model is developed using 

Firefly algorithm (FA).  The major contributions of this work 

are outlined as follows: 

 A new DRNN based FA model has been developed which 

can evaluate SOC accurately and directly by measuring 

signals from the battery such as current, voltage and 

temperature, hence avoiding added filter used in the 

model-based approaches.  

 The DDRN algorithm can self-update its own network 

parameters including weights and bias as well as use the 

previous and present information of hidden state to 

estimate SOC. This is a completely different from 

electrochemical battery model based SOC estimation 

which needs extensive knowledge and time about model 

parameter estimation. 

 The conventional DRNN based SOC estimation model 

uses exhaustive trial and error approach to search for the 

hidden layers and hidden neurons. However, data under-

fitting and over-fitting problems make the DRNN 

algorithm unsuitable for SOC estimation. Therefore, FA is 

employed to find the optimal hyper-parameters of DRNN 

algorithm which helps to assess SOC accurately under 

different charge and discharge cycles. 

 The generalization of DDRN based FA method for SOC 

estimation is validated under different lithium-ion battery 

chemistries. Though the DDRN takes substantial time for 

training operation, the SOC can be measured very quickly 

due to low computational complexity in the testing stage 

and has the advantage to perform SOC evaluation without 

disconnecting the battery from the load.  

II. SOC ALGORITHM FRAMEWORK 

A. Deep Recurrent Neural Network Algorithm 

The deep recurrent neural network (DRNN) is particularly 

suitable for its powerful tool to address time series problems 

[12]. The DRNN is successfully implemented for parameter 

projecting in numerous application such as industries, image 

processing, and forecasting [13]. Moreover, DRNN comprises 

a unique dynamic memory, through which complex system 

can be addressed with the appropriate value of weights. The 

learning procedure of the DRNN is implemented through one 

of the two ways such as feed-forward connection and feedback 

connection [14]. Although the training process of DRNN has 

some similarity with the feed forward neural network, but 

there are some differences between the two processes. The 

output response is evaluated based on a repeated feedback 

process which contains the hidden output of that instance and 

hidden output from the previous instance. The information is 

stored on the feedback loop of the previous phase and final 

output is predicted based on the instantaneous output and the 

previous output [15]. The basic structure of DRNN is 

presented in Fig. 1.  

The SOC is computed using the DRNN algorithm at time t 

with input series (𝑥 = 𝑥1 …𝑥𝑖), hidden vector series (ℎ =
ℎ1, … ℎ𝑖,) and output vector 𝑦𝑘 . The mathematical expressions 

of the series are shows below. 

 

 

Fig. 1 Structure of DRNN 

𝑛𝑒𝑡𝑗 = ∑ 𝑤𝑖,𝑗𝑥𝑖 + 𝑤ℎℎℎ𝑖−1 + 𝜃𝑖,𝑗𝑗             (1) 

𝑂𝑗 = 𝑓(𝑛𝑒𝑡𝑗)                               (2) 

𝑛𝑒𝑡𝑘 = ∑ 𝑊𝑗,𝑘𝑂𝑗 + 𝜃𝑗,𝑘𝑘                             (3) 

𝑂𝑘 = 𝑓(𝑛𝑒𝑡𝑘)                               (4) 

Where 𝑥𝑖  denotes the weight between input layer and hidden 

layer, 𝑤ℎℎ   denotes the weight between a hidden layer and 

itself at adjacent time steps, 𝑥𝑗   is the weight between hidden 

layer and output layer. 𝑂𝑗 and 𝑂𝑘  presents the output of hidden 

layer and output layer respectively. The hidden layer bias and 

output layer bias are characterized by 𝜃𝑗,𝑖  and 𝜃𝑗,𝑘. f() denotes 

the sigmoid activation function which is defined as  

𝑓(𝑛𝑒𝑡) =
1

1+𝑒(−𝑛𝑒𝑡)                                   (5) 

However, two training algorithms can be used to train the 

DRNN such as back-propagation through time (BPTT) and 

other is real-time recurrent learning (RTRL). In particular, the 

network parameter is changed in BPTT from feedback to feed-

forward structures. For the purpose of this research, the BPTT 

method is implemented, which contains two major stages 

namely forward pass and backward pass [16]. The output of 

the forward pass stage is assessed utilizing the inputs, weight, 

bias and sigmoid activation function. In contrast, the backward 

pass algorithm estimates the error and propagates from the 

output layer to the hidden layer [17]. The error in the output 

layer is estimated through the mathematical expression below. 

𝑒𝑘 = 𝑇𝑘 − 𝑂𝑘                              (6) 

Where, 𝑇𝑘  denotes the actual output.  
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The error depends on the factor (𝜕𝑘) that distributes the 

output error (𝑇𝑘) and executes the data upgrdation for 

previous layers as expressed in the following equation, 

𝜕𝑘 = 𝑒𝑘  𝑓
′(𝑛𝑒𝑡𝑘)                                 (7) 

The factor 𝜕𝑗 is computed in the hidden layer which depends 

on the derivative of its activation function and the error factor 

in the output layer (𝜕𝑘) as presented in the following equation, 

𝜕𝑗 = 𝑓′(𝑛𝑒𝑡𝑗) 𝜕𝑘𝑤𝑗,𝑘                               (8) 

Weights are updated using the following equations, 

∆𝑤𝑗,𝑘 = 𝛼𝜕𝑘𝑂𝑗                                           (9) 

𝑤𝑗,𝑘 = 𝑤𝑗,𝑘 + ∆𝑤𝑗,𝑘                                    (10) 

∆𝑤ℎℎ = 𝛼𝜕𝑗ℎ𝑖−1                                        (11) 

𝑤ℎℎ = 𝑤ℎℎ + ∆𝑤ℎℎ                                     (12) 

∆𝑤𝑖,𝑗 = 𝛼𝜕𝑗𝑥𝑖                                          (13) 

𝑤𝑖,𝑗 = 𝑤𝑖,𝑗 + ∆𝑤𝑖,𝑗                                    (14) 

where 𝛼 denotes the learning rate. 

Biases are updated using the following equations 

∆𝜃𝑗,𝑘 = 𝛼𝜕𝑘                                            (15) 

𝜃𝑗,𝑘 = 𝜃𝑗,𝑘 + ∆𝜃𝑗,𝑘                                     (16) 

∆𝜃𝑖,𝑗 = 𝛼𝜕𝑗                                           (17) 

𝜃𝑖,𝑗 = 𝜃𝑖,𝑗 + ∆𝜃𝑖,𝑗                                     (18) 

The Fig. 2 depicts the pseudo code of BPTT algorithm. 

BPTT Algorithm  

1: Procedure: 𝑇𝑅𝐴𝐼𝑁 
2: X:  ⃪𝑇𝑟𝑎𝑛𝑖𝑛𝑔 𝐷𝑎𝑡𝑎 𝑆𝑒𝑡 𝑜𝑓 𝑆𝑖𝑧𝑒 𝑚𝑥𝑚 
3: y:  ⃪𝐿𝑎𝑏𝑒𝑙𝑠 𝑓𝑜𝑟 𝑟𝑒𝑐𝑜𝑟𝑑𝑠 𝑖𝑛 X 

4: w:  ⃪𝑇ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑓𝑜𝑟 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑙𝑎𝑦𝑒𝑟𝑠 

5: l:  ⃪𝑇ℎ𝑒 𝑜𝑓 𝑙𝑎𝑦𝑒𝑟𝑠 𝑖𝑛 𝑛𝑒𝑢𝑟𝑎𝑙 𝑛𝑒𝑡𝑤𝑜𝑟𝑘, 1… . 𝐿 

6: 𝐷𝑖𝑗
(𝑙)⃪ 𝑡ℎ𝑒 𝑒𝑟𝑟𝑜𝑟 

7: 𝑡𝑖𝑗
(𝑙)⃪ 0. 𝐹𝑜𝑟 𝑎𝑙𝑙 l, i, j 

8: For  𝑖 − 1 𝑡𝑜 𝑚 

9       𝑎1⃪ 𝑓𝑒𝑒𝑑𝑓𝑜𝑟𝑤𝑎𝑟𝑑 (𝑎(𝑖), 𝑤) 
10       𝑑𝑙⃪ 𝑎(𝐿) − 𝑦(𝑖) 

11       𝑡𝑖𝑗
(𝑙)⃪ 𝑡𝑖𝑗

(𝑙) + 𝑎𝑖
(𝑙).  𝑡𝑖𝑗

(𝑙+1)
 

12 If   𝒋 ≠ 𝟎 then 

13      𝐷𝑖𝑗
(𝑙)⃪ 

1

𝑚
𝑡𝑖𝑗
(𝑙) + 𝑤𝑖𝑗

(𝑙). 𝜆 

14 else 

15    𝐷𝑖𝑗
(𝑙)⃪ 

1

𝑚
𝑡𝑖𝑗
(𝑙)

 

16 where 
𝜕

𝜕𝑤𝑖𝑗
(𝑙) 𝐽(𝑤) = 𝐷𝑖𝑗

(𝑙)
 

Fig. 2 The pseudo code of BPTT algorithm [18] 

B. Levenberg-Marquardt Algorithm 

The Levenberg-Marquardt (LM) algorithm is known to be 

the fastest training  algorithm which is developed based on the 

approximation of Newton method [19], [20]. The back-

propagation algorithm uses the first order error approximation 

for the neural network computation [21]. The weight of the 

DRNN is updated by LM through the following expression.  

∆𝑤 = [𝜇𝐼 + ∑ 𝐽𝑃(𝑤)𝑇𝐽𝑃(𝑤)𝑃
𝑃=1 ]−1∇𝐸(𝑤)          (19) 

where, 𝐽𝑃(𝑤) denotes the Jacobian matrix of the error vector 

𝑒𝑃(𝑤) which is computed in 𝑤; 𝐼 denotes the identity matrix; 

The vector error represents the error of the network pattern 

denoted as 𝑃, where 𝑃 is computed as 

 𝑒𝑃(𝑤) = 𝑡𝑃 − 𝑐𝑃(𝑤)                        (20) 

Here, the parameter 𝜇 in the equation is either increased or 

decreased in each step of the computation. In this procedure, 

the error value 𝜇 is divided by a factor of 𝛽, if the error value 

is reduced.  

The steps of the LM algorithm are executed through the 

process shown in Fig. 3. In this method, the network output, 

the error vectors and Jacobian matrix of each pattern are 

computed. After that, the error is also recalculated via w+∆𝑤 

as network weight. However, if the value of the error is 

reduced then 𝜇 is divided by a factor of 𝛽 and the new found 

weight is kept before the process starts again. In other cases, 

the error value is multiplied with the factor of 𝛽, then the 

change of error ∆𝑤 is again computed and iteration process 

continues.  

LM Algorithm  

𝐰𝐡𝐢𝐥𝐞 not stop-Criterion 𝐝𝐨  
 Calculate 𝐶𝑃(𝑊) for each pattern 
 Repeat 

  

𝑒2 = ∑ =

𝑝

𝑝

1. 𝑒𝑝(𝑊)𝑇. 𝑒𝑃(𝑊) 

  Calculate 𝐽𝑝(𝑤) for each pattern 

  𝑒𝑃(𝑤 + ∆𝑤)𝑇. 𝑒𝑃(𝑤 + ∆𝑤) 
  𝐢𝐟 𝑒1 ≤ 𝑒2 𝐭𝐡𝐞𝐧 

        𝜇 = 𝜇 ∗ 𝛽 
  End 𝐢𝐟 

 Until 𝑒1 < 𝑒2 
 𝜇 = 𝜇/𝛽 

 𝑊 = 𝑤 + ∆𝑤 

end 𝐰𝐡𝐢𝐥𝐞 

Fig. 3 The pseudo code of LM algorithm [22] 

C. Firefly algorithm 

Firefly algorithm (FA) is based on the flashing light of 

fireflies in the summer sky [23]. The patterns of these flashes 

of light are unique for each species of the fireflies and the 

flashes are used for different purpose in different 

communicating such as attracting the potential prey as well as 

attracting the mating partners. This concept of flashing 

characteristics becomes the basis to develop the FA [24]. The 

FA is developed using three statements. The first statement 

says that all fireflies are unisex and hence the attraction 

between them is independent. The second statement outlines 

the attractive force between the fireflies which is proportional 

to their brightness, which means that the lesser bright firefly 

will be attracted by the brighter ones. The same brightness 

fireflies will move randomly within the boundary. The third 

statement defines the objective function which will be 

determined by the brightness of firefly [25], [26].  

The FA has two vital components; one is the light intensity 

and other is the formulation of attractiveness. The attraction 

function, 𝛽(𝑟) is defined from the relationship between firefly 

attraction and light intensity, as shown in the following 

equation.  

𝛽(𝑟) = 𝛽0𝑒
−𝛾𝑟𝑚

,   (𝑚 ≥ 1)                  (21) 
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where 𝛽0 is the attractiveness for 𝑟 = 0, 𝛾 is the light 

absorption coefficient while 𝑟 is the Cartesian distance 

between two fireflies as defined, 

𝑟𝑖𝑗 = ‖𝑥𝑖 − 𝑥𝑗‖ = √∑ (𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)
2𝑑

𝑘=1                  (22) 

where the two fireflies at 𝑥𝑖   and 𝑥𝑗,  are characterized by 𝑖 and 

𝑗, The k-th component of the spatial coordinate 𝑥𝑖  of the i-th 

firefly is denoted by 𝑥𝑖,𝑘 . The movement of the firefly i which 

feels attraction towards the brighter one (firefly j) is expressed 

as, 

𝑥𝑖−𝑛𝑒𝑤 = 𝑥𝑖−𝑜𝑙𝑑 + 𝛽0𝑒
−𝛾𝑟𝑖𝑗

2

(𝑥𝑗 − 𝑥𝑖−𝑜𝑙𝑑) + 𝛼𝑟 (𝑟𝑎𝑛𝑑 −
1

2
)      (23) 

where the second term in the above equation relates to the 

attraction and the third term is linked to the randomization. 

The randomization parameters 𝛼𝑟 is found in the third term. 

The function rand will generate random number consistently 

between ‘0’ and ‘1’. There is a relationship between 

decreasing function 𝛼𝑟 and decreasing factor, 𝛿, as illustrated 

below: 

𝛼𝑟(𝑡 + 1) = 𝛼𝑟(𝑡) × 𝛿                           (24) 

The pseudo code of FA is shown in Fig. 4 

Firefly Algorithm 

Begin 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  𝒇(𝒙),           𝒙 = (𝒙𝟏, … , 𝒙𝒅)
𝑻 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑖𝑟𝑒𝑓𝑙𝑖𝑒𝑠 𝑿𝒊(𝒊 = 𝟏, 𝟐, … . , 𝒏) 

Light intensity to 𝒇(𝑿𝒊) 
𝐷𝑒𝑓𝑖𝑛𝑒 𝑙𝑖𝑔ℎ𝑡 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝒀 

 
𝒘𝒉𝒊𝒍𝒆 ( 𝒕 < 𝑴𝒂𝒙𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏) 

𝒇𝒐𝒓 𝒊 = 𝟏: 𝒏 all n fireflies      

 
 

 

𝒇𝒐𝒓 𝒊 = 𝟏: 𝒏 𝑎𝑙𝑙 𝑛 𝑓𝑖𝑟𝑒𝑓𝑙𝑖𝑒𝑠     (𝑖𝑛𝑛𝑒𝑟 𝑙𝑜𝑜𝑝)              

      𝒊𝒇 ( 𝑰𝑱 > 𝑰𝒊) 

      𝑀𝑜𝑣𝑒 𝑓𝑖𝑟𝑒𝑓𝑙𝑦 𝒊 𝑡𝑜𝑤𝑎𝑟𝑑 𝒋 
       𝒆𝒏𝒅 𝒊𝒇 

      𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝑣𝑎𝑟𝑖𝑒𝑠 𝑤𝑖𝑡ℎ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝒓 𝑣𝑖𝑎 𝒆−𝒚𝒓 

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑛𝑒𝑤 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑎𝑛𝑑 𝑢𝑝𝑑𝑎𝑡𝑒𝑠 𝑙𝑖𝑔ℎ𝑡 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦  
  𝒆𝒏𝒅 𝒇𝒐𝒓 𝒋 
 𝒆𝒏𝒅 𝒇𝒐𝒓 𝒋 
 𝑅𝑎𝑛𝑘 𝑡ℎ𝑒 𝑓𝑖𝑟𝑒𝑓𝑙𝑖𝑒𝑠 𝑎𝑛𝑑 𝑓𝑖𝑛𝑑 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑏𝑒𝑠𝑡 
 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

 𝑃𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑎𝑛𝑑 𝑣𝑖𝑠𝑢𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 
End 

Fig. 4 The pseudo code of Firefly algorithm [27] 

III. DRNN BASED FA DESIGN FOR SOC ESTIMATION 

The FA is established using three important essentials, 

namely, input information, objective function, and 

optimization constraints. Each essential is working for 

enhancement and classification to achieve optimal hyper-

parameters of DRNN. The aim of FA is to search for the 

appropriate value of hyper-parameters of DRNN in order to 

reach the best solution by minimizing the objective function 

while maintaining the optimization constraints in each 

generation during the iterative process. 

A. Input Information 

The input data for the FA optimization method is a number 

of boundary values for the input dataset of the hyper 

parameters of DRNN. The input matrix is developed using the 

number of columns and rows. The number of columns 

corresponds to the population of hyper parameter within the 

boundary and the number of rows relates to the number of 

problem dimensions, as shown in the following matrix. 

𝐷𝑖𝑗 =

[
 
 
 
 
 
 
𝑋11 𝑋12 𝑋13

𝑋21 𝑋22 𝑋23

𝑋31 𝑋32 𝑋33

     

…
…
…

    

𝑋1𝑗

𝑋2𝑗

𝑋3𝑗    
𝑋41 𝑋42 𝑋43

⋮ ⋮ ⋮
𝑋𝑖1 𝑋𝑖2 𝑋𝑖3

     

…
…
…

    

𝑋4𝑗

⋮
𝑋𝑖𝑗 ]

 
 
 
 
 
 

                       (25) 

where 𝐷𝑖𝑗 is the input data matrix which is defined by i and j. 

𝑖 = 1,2, … … , 𝑃, P is the number of population; 𝑗 =
1,2, … … ,𝑁, N is the problem dimension. 

B. Objective Function 

The target value of the FA optimization is defined by an 

objective function. The aim of objective function is to find the 

lowest error rates through an iterative process which not only 

provides the best value of hyper parameters of DRNN 

algorithms but also delivers an accurate SOC estimation. In 

this research, root means square error (RMSE) is chosen as the 

obejctive function due to high sample dataset and random 

distribution of SOC error estimation [28]. The RMSE function 

is calculated using the following equation, 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑆𝑂𝐶𝑎𝑖 − 𝑆𝑂𝐶𝑒𝑠𝑖)

2𝑁
𝑖=1                      (26) 

where the actual SOC and estimated SOC value are 

represented by 𝑆𝑂𝐶𝑎  and 𝑆𝑂𝐶𝑒𝑠 respectively and N represents 

the amount of data observations. 

C. Optimization Constraints 

The FA algorithm must follow the optimization constraints 

while searching for the optimal values and evaluating SOC. 

The minimum and maximum ranges of hyper-parameters of 

DRNN including hidden layer, and hidden neurons are fixed 

to define the minimum search space. The population of hyper 

parameters is checked repeatedly whether they out of the 

boundary region. Else, the FA optimization could diverge 

which in turn deliver poor SOC estimation results. For 

instance, the variable 𝑋𝑖,𝑗
𝑘  should be between 𝑋𝑖,𝑗

𝑘−1 and 𝑋𝑖,𝑗
𝑘+1. 

If the variable 𝑋𝑖,𝑗
𝑘  is greater than 𝑋𝑖,𝑗

𝑘+1 or less than 𝑋𝑖,𝑗
𝑘−1,  the 

results will be updated and placed within the border. Hence, 

the appropriate border of the hyper-parameters of DRNN must 

satisfy the constraints mentioned below,  

𝑋𝑖,𝑗
𝑘−1 < 𝑋𝑖,𝑗

𝑘  <𝑋𝑖,𝑗
𝑘+1                              (27) 

IV. LITHIUM-ION BATTERY EXPERIMENTS AND DATA 

PREPARATION 

A. Lithium-ion battery cell 

The experiments were conducted using ICR18650-26F 

lithium-ion batteries developed by Samsung. This battery is 

designed using LiNiMnCoO2 (LiNMC) as cathode and 

graphite as an anode. The test battery has the nominal capacity 

and the nominal voltage of 2600 mAh and 3.7V, respectively. 

The maximum charging voltage and cut-off voltage is set to 

4.2 V and 2.75 V. The battery is charged using constant 

current-constant voltage (CC-CV) method. Another lithium-

ion battery cell NCR18650B is used in this research which is 
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made by Panasonic. This battery has rated capacity of 3200 

mAh and is built using graphite anode and LiNiCoAlO2 

cathode (LiNCA) as a cathode. The nominal and cut-off 

voltage is 3.6 V and 2.5 V respectively. This battery is popular 

due to high energy and power densities, long life span The 

detailed specifications of the two lithium-ion battery are 

shown in Table I [29] [30]. 

TABLE I  

LITHIUM-ION BATTERY SPECIFICATIONS  

Parameters LiNiMnCoO2 LiNiCoAlO2 

Rated nominal capacity (Ah) 2.6 Ah 3.2 Ah 

Nominal Voltage (V) 3.7 3.6 

Min/Max voltage (V) 2.75/4.2  2.5/4.2  
Specific Energy (Wh/kg) 150-220 200-260 

Cycle life 1000-2000 500 

 

B. Battery experimental tests 

Different types of battery tests are conducted to validate the 

SOC estimation accuracy and robustness such as the static 

discharge test and Hybrid Pulse Power Characterization 

(HPPC) test. The battery is completely charged before the 

experiments which means initial SOC is set to be 100%. 

LiNMC battery is used to describe the tests. Similar 

approaches can be applied for LiNCA battery while 

maintaining the defined voltage and current value suggested 

by the manufacturer.  

1) Static discharge test: Static discharge test is widely used 

to verify the SOC estimation accuracy. In general, the test is 

conducted using constant current discharge after the battery is 

being fully charged. The stages of static discharge test are 

explained as follows: 

i. First, the battery is charged using the constant current 

(CC) method with 1.3 A (0.5 C) current until the charge 

voltage reaches 4.2 V. 

ii. After, the constant voltage (CV) method is applied with 

the voltage of 4.2 V until the charge current drops to 0.13 

A (0.05 C). 

iii. Check whether the battery is fully charged. If the battery 

is fully charged then, step iv will start, otherwise, step ii 

will begin. 

iv. The battery is rested for 1 hour. 

v. The battery is discharged with 2.6 A (1 C) until the 

battery voltage declines to 2.75 V.  

vi. Check whether the lower cut off voltage of the battery is 

reached. If the battery reaches at 2.75 V, then test ends 

otherwise, step v will initiate again. 

2) HPPC test: HPPC test is a combination of sequence 

charge and discharge pulses. The customized HPPC is 

employed in this research using the different rates of charge 

and discharge current rates. The steps of HPPC are described 

as follows: 

i. The battery is charged with constant current of 1.3 A 

(0.5 C) until the charge voltage reaches 4.2 V. 

ii. The battery is charged with the constant voltage of 4.2 V 

until the charge current drops 0.13 A (0.05 C). 

iii. Check whether the battery is fully charged. If the battery 

is fully charged then, step iv will start, otherwise, step ii 

will begin again. 

iv. The battery is rested for 1 hour. 

v. The battery is discharged at 1.3 A (0.5 C) for 10 seconds. 

vi. The battery is rested for 3 minutes. 

vii. The battery is charged at 1.3 A (0.5 C) for 10 seconds. 

viii. The battery is rested for 3 minutes. 

ix. The battery is discharged for 0.65 A (0.25 C) for 24 

minutes to reduce the SOC capacity by 10%. 

x. Check whether the lower cut off voltage of the battery is 

reached. If the battery reaches 2.75 V, then test ends 

otherwise, step iii will continue.  

C. Battery Experimental Setup 

A lithium-ion battery test bench model is developed which is 

divided into two parts, namely hardware part and software 

part, as displayed in Fig. 5. The hardware part comprises a 

LiNMC, LiNCA battery and NEWARE BTS-4000. The BTS-

4000 is a fourth-generation battery testing system developed 

by NEWARE, and has been available in the market since 

2008. Different kinds of battery tests can be performed using 

BTS-4000 including pulse test, resistance test, and cycle test. 

NEWARE BTS-4000 is better than other battery testing 

system in term of accuracy, data acquisition frequency and 

response time. The current and voltage range of NEWARE 

BTS-4000 is 6A and 5 V respectively. The precision of current 

and voltage accuracy is set as ± 0.05% FS [31]. It has eight 

independent channels which can record the battery data 

including current, voltage, charging and discharging capacity 

and cycle number. The device contains the power supply to 

charge the battery and load to discharge the battery and 

controller to control battery charging and discharging. The 

software part includes BTS software version 7.6 and 

MATLAB 2015a which are installed in the host computer. 

The static discharge test and HPPC test are conducted in each 

second at room temperature and data are stored in the host 

computer. The control operation of LiNMC and LiNCA 

battery charging and discharging is performed using 

NEWARE BTS-4000 while maintaining the threshold voltage 

and current values recommended by the manufacturer through 

BTS software version 7.6. Finally, the MATLAB 2015a 

version is used to estimate SOC and different error rates terms 

using DRNN-FA algorithm code and data obtained from 

experiments. 
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Fig. 5. Lithium-ion battery test bench model configuration 

 

D. Training and Testing Dataset 

After the algorithm development followed by the 

experimental data measurements, the whole dataset is divided 

into two subsets; training and testing.  The developed SOC 

method is trained using 70% data and remaining unseen 30% 

data is used for SOC testing. The DRNN training and FA 

optimization execution for finding the optimal hyper-

parameters are performed in offline condition while the SOC 

estimation is evaluated in online condition. Before the data 

training operation begins, data normalization is executed in 

order to enhance the convergence rate the DRNN algorithm. 

The boundary of data normalization is assigned to be [-1, 1] as 

expressed in the following equation,  

𝑥 =
2(𝑥−𝑥𝑚𝑖𝑛)

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
− 1                           (28) 

Where the maximum and minimum value of input vector 𝑥 

is denoted by 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛. The maximum number of 

epochs during training the stage is set to be 1000. The 

performance goal is fixed to be 0.000001. The algorithm is 

executed on Core i5 2.3 GHz processor with 12 GB RAM. 

The input dataset including current and voltage of static 

discharge test and HPPC test for LiNMC and LiNCA battery 

are depicted in Fig. 6 and Fig. 7 respectively. The increment 

of voltage profile with respect to SOC for LiNMC and LiNCA 

battery is indicated in Fig. 8. 

  

Fig. 6. Static discharge current profile (a) LiNMC (b) LiNCA 

 
 

Fig. 7. HPPC load profile (a) LiNMC (b) LiNCA 

 
 

Fig. 8. Relationship between SOC and voltage (a) LiNMC (b) LiNCA 
 

E. SOC Effectiveness Measures  

The proposed method is validated using numerous 

performance indicator terms as shown in equations (27-31). 

The performance of SOC is compared with the actual SOC 

value. The actual SOC or reference SOC is obtained from 

ampere hour method. 

𝑆𝑂𝐶 𝑒𝑟𝑟𝑜𝑟 = 𝑆𝑂𝐶𝑎 −   𝑆𝑂𝐶𝑒𝑠                        (29) 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑆𝑂𝐶𝑎𝑖

− 𝑆𝑂𝐶𝑒𝑠𝑖
)
2𝑁

𝑖=1                    (30) 

𝑀𝐴𝐸 =
1

𝑁
∑  (𝑆𝑂𝐶𝑎𝑖

− 𝑆𝑂𝐶𝑒𝑠𝑖
)    𝑁

𝑖=1                 (31) 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑  |

𝑆𝑂𝐶𝑎𝑖−𝑆𝑂𝐶𝑒𝑠𝑖

𝑆𝑂𝐶𝑎𝑖

|  𝑁
𝑖=1                         (32) 

𝑆𝐷 = √
1

𝑁−1
∑ (𝑆𝑂𝐶𝑒𝑟𝑟𝑜𝑟 − 𝑆𝑂𝐶𝑒𝑟𝑟𝑜𝑟

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)2 𝑁
𝑖=1          (33) 

𝑆𝑂𝐶𝑒𝑟𝑟𝑜𝑟
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  denotes the average value of SOC error.   

V. EXPERIMENTAL VALIDATION OF SOC ESTIMATION 

A. Objective Function Assessment and Optimal Parameter 

The FA is implemented with 50 population and 500 

iterations. The objective function is evaluated by developing 

the optimization response curve for both static discharge test 

and HPPC test, as illustrated in Fig. 9 and Fig. 10, 

respectively.  

  

Fig. 9. Optimization response curve for static load profile (a) LiNMC (b) 

LiNCA 

  

Fig. 10. Optimization response curve for HPPC load profile (a) LiNMC (b) 

LiNCA 

The optimal values of hidden layer and hidden neurons are 

determined by observing the minimum value of the objective 

function in the optimization response curve. For instance, in 

LiNMC and LiNCA battery cell, the minimum value of 

objective functions of 0.285% and 0.256% are found after 207 

and 105 iterations respectively for static discharge test. The 

corresponding iteration numbers deliver the optimal number of 

hidden layer and hidden neurons of 4, 6 and 15, 13 
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respectively. In HPPC load profile, 100, 216 iterations provide 

the lowest value of the objective function of 0.225%, 

0.2114%, delivering the optimal number of hidden layer and 

hidden neurons 3, 5 and 10, 9 respectively for LiNMC and 

LiNCA battery cell. The optimal values of hyper-parameters 

of DRNN attained by FA algorithm is shown in Table II. 

TABLE II  

OPTIMAL HYPER-PARAMETERS OF DRNN ALGORITHM 

Battery test Optimal hyper 

parameters 

LiNMC LiNCA 

Static 
discharge 

Hidden layer 4 6 
Hidden neurons 15 13 

HPPC 
Hidden layer 3 5 

Hidden neurons 10 9 

 

B. Experimental Results and Comparison Study 

The DRNN-FA algorithm based SOC estimation method is 

validated by the experimental results obtained from static 

discharge test and HPPC test. The results are evaluated for 

both LiNMC and LiNCA battery. The performance of DRNN 

based FA algorithm for SOC estimation is compared with state 

of art machine learning algorithms including back-propagation 

neural network (BPNN) and radial basis function neural 

network (RBFNN). The similar input variables as well as a 

similar dimension of training and testing dataset are used in 

both BPNN and RBFNN methods. The network parameters of 

BPNN and RBFNN are also optimized by FA in order to 

conduct a fair comparison. 

1) SOC estimation using LiNMC battery: The DRNN-FA 

based SOC and SOC error estimation results for static 

discharge test and HPPC test are presented in Fig. 11 and Fig. 

12 respectively. It is noticed from two figures that the SOC 

line estimated DRNN-FA algorithm is nearly aligned with the 

reference SOC value which demonstrates the excellent 

estimation accuracy. The effectiveness of DRNN-FA method 

is compared with BPNN-FA and RBFNN- FA algorithms 

using different error rates terms, as shown in Table III. In 

static discharge cycle, DRNN based FA algorithm achieves 

RMSE of 1.325% which is a decrease of 29.7% and 13.2% 

compared to BPNN-FA and RBFNN-FA algorithms, 

respectively. The results are also improved in MSE, MAE, and 

MAPE and SD values in DRNN-FA algorithm. For instance, 

the MAE is computed to be 1.215% that is declined by 19.1% 

and 4.6% from BPNN-FA and RBFNN-FA algorithms, 

respectively. Likewise, about 5.3% and 16.5% reductions are 

noted in DRNN-FA algorithm respectively compared with 

BPNN-FA and RBFNN-FA algorithm while assessing MAPE. 

Moreover, in the proposed method, the SOC error is found 

low and limited to [-2.38%, 4.23%] whereas BPNN-FA and 

RBFNN-FA algorithms have high SOC error bound of [-

5.77%, 8.68%] and [-7.42%, 11.94%] respectively. Similar 

kind of results is also achieved in the HPPC test where RMSE 

is dropped by 21.6% and 69.8% compared with BPNN-FA 

and RBFNN-FA algorithms, respectively. In addition, the 

DRNN based FA algorithm also obtains relatively small MSE, 

MAE, MAPE, SD, and SOC error values compared to the 

other two methods. 

  

Fig. 11 Experimental results in static discharge test for LiNMC battery (a) 

SOC (b) SOC error 

 

  

Fig. 12 Experimental results in HPPC test for LiNMC battery (a) SOC (b) 

SOC error 

TABLE III 
PERFORMANCE ASSESSMENT IN LINMC BATTERY 

SOC Method BPNN-FA RBFNN-FA DRNN-FA 

Load Profile 
Static  

discharge 
HPPC 

Static  

discharge 
HPPC 

Static  

discharge 
HPPC 

RMSE (%) 1.884 1.015 1.527 2.634 1.325 0.796 

MSE (%) 0.0363 0.011 0.0252 0.0724 0.0164 0.0065 

MAE (%) 1.502 0.420 1.274 1.853 1.215 0.512 

MAPE (%) 6.157 11.328 6.982 14.746 5.829 8.867 

SD (%) 1.868 1.018 1.675 2.642 1.332 0.796 

SOC error 

bound (%) 

[-5.77, 

8.68] 

[-15.17, 

21.75] 

[-7.42, 

11.94] 

[-17.89, 

27.21] 

[-2.38, 

4.23] 

[-4.72, 

5.8] 

 

2) SOC estimation using LiNCA battery: Similar battery 

experiential tests are also conducted with LiNCA battery to 

check the performance of SOC using DRNN-FA algorithm, as 

shown in Fig. 13 and Fig. 14. LiNCA battery has stepper 

SOC-voltage curve compared to LiNMC battery, hence 

LiNCA achieved fairly lower error rates compared to LiNMC 

battery. A detailed comparative analysis among the proposed 

algorithm, BPNN-FA, and RBFNN-FA algorithms is 

presented in Table IV. The RMSE of the DRNN-FA algorithm 

in static discharge test is computed to be 1.127% which is a 

36.7%, 18.6% reduction from the BPNN-FA and RBFNN-FA 

algorithms, respectively. The results of DRNN-FA algorithm 

is also enhanced in terms of MAE and reduced by 31.7% and 

13.3% in comparison to BPNN-FA and RBFNN-FA 

algorithms. Furthermore, the performance of the proposed 

algorithm is satisfactory while assessing the MSE, MAPE and 

SD values, SOC error. The results are also found suitable in 

case of HPPC test obtaining a narrow SOC error bound of [-

5.42%, 2.35%], which is lower than the value of [-9.58%, 

6.07%] and [-4.79%, 13.65%], attained by BPNN-FA and 

RBFNN-FA algorithms, respectively. 

  

Fig. 13 Experimental results in static discharge test for LiNCA battery (a) 
SOC (b) SOC error 
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Fig. 14 Experimental results in HPPC test for LiNCA battery (a) SOC (b) 

SOC error 

TABLE IV 
PERFORMANCE ASSESSMENT IN LINCA BATTERY 

SOC Method BPNN-FA RBFNN-FA DRNN-FA 

Load Profile 
Static  

discharge 
HPPC 

Static  

discharge 
HPPC 

Static  

discharge 
HPPC 

RMSE (%) 1.779 0.986 1.384 1.528 1.127 0.596 

MSE (%) 0.0347 0.0098 0.0157 0.0258 0.0131 0.0042 

MAE (%) 1.428 0.418 1.126 1.237 0.976 0.423 

MAPE (%) 5.839 10.623 6.525 11.087 5.788 8.028 

SD (%) 1.787 0.992 1.337 1.528 0.597 0.539 

SOC error 

bound (%) 

[-5.95, 

5.48] 

[-9.58, 

6.07] 
[-3.47, 3.79] 

[-4.79, 

13.65] 

[-2.27, 

1.54] 

[-5.42, 

2.35] 

VI. CONCLUSION 

An optimized DRNN algorithm based SOC estimation 

method is developed for a lithium-ion battery. The 

computation intelligence of the DRNN algorithm for SOC 

estimation is enhanced significantly by employing the FA 

algorithm. The optimum number of hidden layer and hidden 

neurons are estimated by FA which improves the SOC 

estimation accuracy and computation speed. The developed 

algorithm is validated by experiments with two different 

chemistry of lithium-ion cell, including LiNMC and LiNCA to 

assess the generalization performance. The proposed method 

has proved to become an effective SOC algorithm that 

achieves reasonable accuracy while reducing SOC error under 

5% in static discharge test and below 6% in the HPPC test. 

The comparative validation with BPNN algorithm and 

RBFNN algorithm also confirms that the DRNN based FA 

algorithm has low RMSE, MSE, MAE, MAPE and SD during 

SOC estimation. The experimental results validate the 

suitability of DRNN-FA algorithm for on-board BMS 

implementation since few computations is required to estimate 

SOC in the testing stage. However, there are various issues 

which will be addressed in future research. The proposed 

method estimates SOC for a lithium-ion battery, however, the 

future work will be concerned on the evaluation of DRNN-FA 

algorithm based SOC estimation for a battery pack of EV. The 

future research will also assess the performance degradation of 

lithium-ion batteries with aging effects. Furthermore, the 

lithium-ion battery SOC performance under different 

temperatures will be investigated. 
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