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A B S T R A C T

The development of water quality prediction models is an important step towards better water quality man-
agement of rivers. The traditional method for computing WQI is always associated with errors due to the pro-
tracted analysis of the water quality parameters in addition to the great effort and time involved in gathering and
analyzing water samples. In addition, the cost of identifying the magnitude of some of the parameters through
experimental testing is very high. The water quality of rivers in Malaysia is ranked into five classes based on
water quality index (WQI). WQI is function of six water quality parameters: ammoniac nitrogen (NH3-N), bio-
chemical oxygen demand (BOD), chemical oxygen demand (COD), dissolved oxygen (DO), pH, and suspended
solids (SS). In this research, the decision tree machine learning technique is used to predict the WQI for the Klang
River and its classification within a specific water quality class. Klang River is one of the most polluted rivers in
Malaysia. Modeling experiments are designed to test the prediction and classification accuracy of the model
based on various scenarios composed of different water quality parameters. Results show that the proposed
prediction model has a promising potential to predict the class of the WQI. Moreover, the proposed model offers
a more efficient process and cost-effective approach for the computation and prediction of WQI.

1. Introduction

Water managers need to manage river water quality considering
that most daily water supply is sourced from rivers, especially in
Malaysia. The deteriorating river water quality has an impact on river
health, including fluvial ecology, which increases the risk to human
health and the challenges to ensure sustainable production of drinking
water. The development of water quality prediction models is an im-
portant step towards better water quality management of rivers. During
the last several decades, efforts have been made to develop accurate
prediction models for water quality parameters by utilizing different
modelling methods (Chau, 2006; Manache and Melching, 2008; Singh
et al., 2011). Researchers, among others, have given special attention to
the artificial intelligence modelling methods (Maier and Dandy, 2000).

Artificial Neural Networks (ANNs) have been used with success to

predict water quality parameters, such as Dissolved Oxygen (DO), Biological
Oxygen Demand (BOD), and Chemical Oxygen Demand (COD) in water-
ways. Since DO is considered to be the most important parameter in river
water quality, numerous studies were conducted to predict DO concentra-
tion based on different parameters by using various ANN models. Sarkar
and Pandey (2015) studied the development of feedforward, back propa-
gation ANNs to simulate DO concentration in the Yamuna River. The re-
searchers found that in order for their ANN model to achieve the best
performance, an optimal number of input variables have to be fed into the
model. The complexity of a model increased with higher number of input
variables, and the performance drastically deteriorated with the over-re-
duction of the model input (Afan et al., 2017; Sarkar and Pandey, 2015).

A study conducted by Csábrági et al. (2017) compared the perfor-
mance of different ANNs in predicting DO concentration. The study
compared the performance of multivariate linear regression (MLR) and
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three other ANN models; multilayer propagation neural networks
(MLPNNs), radial basis networks (RBFNNs), and general regression
neural networks (GRNNs). The result of the study indicated that the
major drawback of MLPNNs is the need for multiple runs to avoid the
possibility of a misleading outcome of a single run. The study concluded
that GRNNs gave the best DO prediction in contrast to MLPNNs,
RBFNNs, and MLR (Csábrági et al., 2017). These studies showed that
not only are ANNs able to predict water quality parameters, but they
also provide recommendations for modification and improvement of
their drawbacks and prediction performance, as was shown in the
GRNN.

Najah et al. (2012) conducted a study on water quality prediction by
using integrated wavelet-ANFIS model. Three water quality parameters,
i.e., Total Dissolved Solids (TDS), electrical conductivity, and turbidity of
the Johor River, were used in the study. ANFIS was modified using a
wavelet de-noising technique to reduce the complex uncertainty induced
noise, which allows the model to produce superior result as compared to
those obtained when using MLPNNs and ANFIS where the mean absolute
error in percentage could be as low as 0.01 (Najah et al., 2012).

These studies have shown the degree to which machine learning
(ML) models can be used to predict water quality parameters even
though they have a complex and non-linear computational method and
are stochastic in nature. In fact, the flexibility of ML models makes it
possible to develop a better and more effective models to deal with the
difficulties in monitoring water quality parameters. These studies
however, focused on the prediction of a single water quality parameter
rather than focusing on the prediction of water quality index (WQI).
However, several water quality parameters have to be monitored/
analysed in order to obtain the required information to estimate of
WQI. As a matter of fact, the process of obtaining such predefined water
quality parameters is time-consuming and very costly. In this regard,
the present study will focus on developing a prediction model for WQI,
which requires less water quality parameters and therefore reduce the
time required to perform the analysis and minimize the cost required in
order to achieve the desired WQI for rivers based on the conditions in
Malaysia. The authors believe that this model could potentially be
generalized for application to several river conditions worldwide.

The computation of the water quality index (WQI) in Malaysia, which
involves a series of sub-index calculations, is lengthy and complicated, and
is often associated with errors during the computation processes. There are
complex and non-linear relationships between the WQI and the water
quality parameters. Furthermore, some of the parameters require

exhaustive sample collection campaign that is time-consuming, and must
be conducted by skilled technicians to ensure accurate sample analysis and
data representation. Even with advanced equipment and technology, high
operative and management cost hinders a comprehensive spatial and
temporal monitoring of river water quality. Hence, there is a need to de-
velop a data driven model with a high capability in order to simplify the
processes, reduce the errors, and reduce the need for costly and time-
consuming sampling and lab analysis.

Decision tree is a popular machine learning tool and is often used to
identify possible consequences such as the chance event outcomes, in-
vestment risks, decision making, and interest rate. This classifier modelling
method showed an outstanding performance even when used with a
complex dataset to identify its pattern behaviour (Everaert et al., 2016).

The main objective of this research is to develop a model for predicting
the class of WQI which indicate the status of river water quality. The
decision tree modelling has been utilized as a predictor for the WQI class.
The proposed decision tree model will be evaluated under three different
scenarios by utilizing the water quality data for the Klang River since it is
the most polluted river in Malaysia (Othman et al., 2012).

2. Materials and method

2.1. Study area

The Klang River runs through urban and developed areas, cutting
right through the middle of the Federal Territory of Kuala Lumpur
while the upstream and downstream parts of the river flow through the
state of Selangor. It is situated between latitudes 2°55′N and 3°25′N and
longitude 101′I5′E and 101°55′E. Geographically, the Klang River be-
gins at an altitude of about 1200m on the western slopes of Peninsula
Malaysia and runs south-westwards to join the Gombak River in the
centre of Kuala Lumpur. The Klang River is almost 120 km long and its
drainage basin area is around 1260 km2. The population in the Klang
River basin is projected to reach 10 million by the year 2020 from the
current estimated population of 7.2 million. Several Water Treatment
Plants (WTPs) extract water from the tributaries within the Klang River
basin, i.e., Bukit Nanas and Wangsa Maju with a design capacity of 145
MLD and 45 MLD, respectively (Mohamed et al., 2015). However, it
should be noted that, despite the huge basin area, most of the treated
water for Kuala Lumpur is supplied by the neighbouring state of Se-
langor. Fig. 1 shows the Klang River basin.

The Department of Environment (DOE) has setup numerous water

List of symbols and abbreviations

AN/NH3-N Ammoniacal nitrogen
ANFIS Adaptive neuro-fuzzy inference system
ANN Artificial neural network
API Air pollutant index
ASTM American Society for Testing and Materials
BOD Biochemical oxygen demand
BPNN Back propagation neural network
COD Chemical oxygen demand
DO Dissolved oxygen
DOE Department of Environment
FFNN Feed forward neural network
FWQ Fuzzy water quality
GRNN General regression neural network
IDTL Improved decision tree
INWQS Interim National Water Quality Standards
km Kilometre
km2 Squared kilometre
m3 Cubic metre
MANFIS Modified adaptive neuro-fuzzy inference system

mg/l Milligram per litre
MLD Millions of litres per day
MLPNN Multilayer propagation neural network
MLR Multivariate linear regression
NO2 Nitrogen dioxide
pH Potential of hydrogen
PM10 Particulate matter 10 µm or less in diameter
pred. Predicted
r2 Coefficient of determination
R2 Correlation of coefficient
RBFNN Radial basis function neural network
RMAE Root mean absolute error
RMSE Root mean square error
RoL River of Life
SNR Signal to noise ratio
SO2 Sulphur dioxide
sq. miles Squares miles
SS Suspended solids
TDS Total dissolved solids
WQI Water quality index
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quality stations along the main stream of the Klang River, which are
operated by the DID, to facilitate the monitoring and management of
water resources. The six parameters (as presented in Eq. (1)) were
measured, and additional assessment on conductivity, turbidity, sali-
nity, temperature, microbial, nutrients, and heavy metals concentration
are made when there is a necessity for it (Sharif et al., 2015).

The Klang River Basin lies in an area with humid tropical climate
that is characterised by heavy rainfall, uniform temperature, and high
humidity. In the east, at the foothill, the average annual rainfall is al-
most 2600mm and the amount decreases to around 1900mm at the
coast. Peak rainfall occurs during two two-month periods, i.e. from
April to May and October to November during the Southwest and
Northeast Monsoons, respectively. The average monthly humidity is
between 80 and 85%; the average monthly temperature in the basin
ranges between 26 and 28 °C; the daily sunshine duration is between
4.5 and 7.0 h/day; and the daily evaporation ranges between 3 and
5mm/day (El-Shafie et al., 2012).

The land use in the Klang Valley basin area is diverse, ranging from
tropical forests in the headwater region to urban areas with their as-
sociated activities in the central region, and agriculture in the fringes of
the basin. About 41% of the basin is agricultural area, 29% is urban,
25% is forests and swamps, and tin mines make up 5% of the total basin
area. The urban area consists of recreational, residential, industrial,
institutional and commercial zones.

The Klang River basin has been experiencing serious environmental
degradation and flooding as a result of continuous development, in-
dustrialization, and population growth. The rapid development in the
area is expected to further increase the probability of water stress
condition with regard to future water supply. A report published by the
DID in 2011 projected that the water demand in Kuala Lumpur
Gombak, Petaling and Klang will increase to 1194 million liter per day
(MLD) for the period between 2015 and 2050. The Klang River is
currently critically polluted due to inefficient water quality manage-
ment. Improperly treated sewage and industrial and residential dis-
charges from the Klang River Basin flow into the river; this problem is
compounded by high events of soil erosion as a result of inefficient
control plan at construction sites.

2.2. Data collection

The data collected from the 15 automatic monitoring stations for
the six parameters during the period between 2000 and 2010 for Klang
River are demonstrated in Fig. 2. Fig. 2 shows the distribution of the six

water quality parameters measured between the years 2000 and 2010.
The DO parameter gives a direct assessment of river health. Fig. 2a
shows that the DO data contains a significant fraction of low DO con-
centration, even up to<1mg/L, especially during the period between
2000 and 2002. The DO concentration improved substantially in 2003
with an average value of 4mg/L. Despite the fluctuation in the value of
DO concentration, which occasionally reached the desirable Class I
category, the Klang River is in fact a class III river. This is supported by
the average value of COD and BOD concentrations of 45 and 7mg/L,
respectively. The spikes observed in Fig. 2b (which could peak to>
50mg/L for BOD) is believed to be due to illegal sewage discharges.
Even though the Government has imposed strict penalties on those who
cause pollution, the large area of the Klang River basin makes it pos-
sible for blind spot discharge locations to exist, thus allowing the pol-
luters to avoid being caught by the authorities. High concentration of
TSS was observed in the first few years of the current millennium, with
the highest measured TSS of 1400mg/L (Fig. 2d). The rapid develop-
ment taking place in recent years in Kuala Lumpur, coupled with the
lack of training in the proper implementation of Erosion and Sediment
Control Plan (ESCP), are believed to be a major factor contributing to
the high levels of sedimentation in the Klang River. The level of am-
monia nitrogen has clearly exceeded the value stipulated in the
guideline, with the maximum measured value being 20 times higher
than the value set for Class III. The mean NH3-N value of 4mg/L put the
Klang River in Class V category, hence posing serious ecological risk.
Fig. 2e shows that the pH ranges between 5.5 and 8, which is within the
acceptable range for Class II and III stipulated in the water quality
standard of rivers (Table 2).

The water quality indexes during the study period fluctuate widely
between the year 2000 and mid-2005. The classification of Klang River
varied between Class I and Class V (with an average of Class III)
throughout this period. In 2006, the state of the Klang River has im-
proved significantly and a smaller fluctuation was observed in the water
quality index. Despite of this, the Klang River is still categorized as a
Class III river. The temporal data of the WQI showed that the Klang
River was categorized as Class I only once (0.01 percent of the time);
Class V twenty times (0.2% of the time; and class II 66 times (6.9% of
the time) during the study period. During the period between the year
2000 and 2010, classifications activities were carried out each two
months for the Klang River. The results showed that Klang River mostly
was categorized as class III and class IV, 46% and 45% of the time,
respectively.

Map of Malaysia 

Fig. 1. Location of Klang River Basin, Malaysia.
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2.3. Methodology

2.3.1. Determination of WQI
In 1978, the Department of Environment (DOE) in Malaysia in-

troduced the water quality index (WQI) and started to monitor river
water quality. The aim of this initiative was to establish a baseline
monitoring system for river water quality, to detect any changes in
water quality, and to identify the sources of pollution so that immediate
actions could be taken to mitigate the pollution. Since then, a total of
1064 manual monitoring sites have been set up in 143 river basins in
Malaysia (DOE, 2007). The formula for calculating WQI was proposed
by the DOE and a panel of experts was consulted on the choice of
parameters and the relative weight to be assigned to each parameter
(Hameed et al., 2016).

The WQI is computed based on six water quality parameters, i.e.
biological oxygen demand (BOD), chemical oxygen demand (COD),

dissolved oxygen (DO), suspended solids (SS), pH, and ammoniac ni-
trogen (NH3-N). The formula for computing the WQI is given by Eq. (1),
and Table 1 presents the formula used to calculate the sub-indexes (SI).
Water quality is ranked into Class I, II, III, IV, and V, based on the WQI
and the Interim National Water Quality Standards for Malaysia
(INWQS) as shown in Table 2 (DOE, 2007). Currently, there are 15
automatic monitoring stations, which continuously monitor the water
quality in the Klang River.

= + + + +
+

WQI SIDO SIBOD SICOD SISS
SIAN SIp
0.22 0.19 0.16 0.16 0.15

0.12 (1)

2.3.2. Decision tree modelling approach
Decision tree model is one of the most frequently used techniques in

data mining. It is a popular machine learning tool and is often used to
identify possible consequences, such as the chance of event outcomes,

a) Dissolved Oxygen  b) Biochemical Oxygen Demand

c) Chemical oxygen demand d) Suspended Sediment 

e) pH f) Ammoniac Nitrogen 
Fig. 2. 10 years distribution for a) Dissolved Oxygen, b) Biochemical Oxygen Demand, c) Chemical oxygen demand, d) Suspended Sediment, e) pH, and f) Ammoniac
Nitrogen, during the period between 2000 and 2010 for Klang River.
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investment risks, decision making, and interest rate (Azad and
Moshkov, 2017; Khosravi et al., 2018). The ID3 core algorithm in the
decision tree model employs a top-down, greedy search through the
space of possible branches with no backtracking, and allows the
handling of both categorical and numerical data. Decision tree models
are able to include predictors with dependence assumptions between
the predictors (Brown and Myles, 2013). Decision tree-works with a

tree structure, building classification and regression models. When a
dataset is fed into this model as an input layer, the system breaks down
the complex dataset into small subsets while at the same time building a
decision tree model by analysing those data (see Fig. 3).

The basic idea of decision trees is known as the divide-and-conquer
technique. The dataset is broken down into different parts in each step,
and each part is supposed to better represent one of the possible classes of
the data. The result is a tree structure where each inner node represents a
test for the value of an attribute and each leaf represents the decision for a
particular class. A new and unknown case is then routed down the tree
until it reaches one of the leaves (Brown and Myles, 2013). Fig. 4 presents
the structure of a decision tree model where the decision and the leaf
nodes are represented by squares and circles, respectively. Each node has
two options based on the value type of the feature used at this node. For
nominal features, the number of children is usually equal to the number of
possible values of this feature. By using a nominal feature for a test in one
of the inner nodes, the dataset at this stage is basically divided based on
the different values of this feature. Hence, a nominal feature will not be
tested more than once since all examples further down the tree will have
the same value as this particular feature. This is different for numerical

Table 1
Sub-index calculation formula for WQI Malaysia.

Parameter Value Sub-index equation

DO (in %
saturation)

x≤8 SIDO=0
x≥92 SIDO=100
8 < x < 92 SIDO=−0.395+0.030x2 – 0.00020x3

BOD x≤5 SIBOD=100.4−4.23x
x > 5 SIBOD= (108e−0.055x)− 0.1x

COD x≤20 SICOD=−1.33x+99.1
x > 20 SICOD= (103e−0.0157x)− 0.04x

SS x≤100 SISS= (97.5e−0.00676x)+ 0.05x
100 < x < 1000 SISS= (71e−0.0061x)− 0.015x
x≥1000 SISS=0

NH3-N x≤0.3 SIAN=100.5− 105x
0.3 < x < 4 SIAN= (94e−0.573x)− 5(x-2)
x≥4 SIAN=0

pH x < 5.5 SIpH=17.2− 17.2x+ 5.02x2

5.5≤ x < 7 SIpH=−242+95.5x− 6.67x2

7≤ x < 8.75 SIpH=−181+82.4x− 6.05x2

x≥8.75 SIpH=536−77.0x+2.76x2

Table 2
DOE water quality index classification.

Parameter Unit Class

I II III IV V

NH3-N mg/l < 0.1 0.1–0.3 0.3–0.9 0.9–2.7 > 2.7
BOD mg/l < 1 1–3 3–6 6–12 >12
COD mg/l < 10 10–25 25–50 50–100 >100
DO mg/l > 7 5–7 3–5 1–3 < 1
pH – >7 6–7 5–6 <5 >5
SS mg/l < 25 25–50 50–150 150–300 >300

WQI – < 92.7 76.5–92.7 51.9–76.5 31.0–51.9 < 31.0

Fig. 3. Water Quality Index for Klang River during the period between years 2000 and 2010. Frequency of class classification (presented in bracket) for Class I
(0.001), Class II (0.069), Class III (0.46), Class IV (0.45), and Class V (0.02).

Fig. 4. Typical structure of decision tree.
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attributes where test is performed if the attribute value is greater or less
than a determined constant. The attribute could be tested several times for
different constants.

A decision tree is constructed top-down in a recursive divide-and
conquer mode. At the first stage, the feature for the root node is se-
lected. Then a branch for each possible feature value is formed and the
cases are split into subsets based on the possible values. Finally, these
steps are repeated recursively for each branch using only cases that
reach the branch. The process will stop when all instances have the
same class. Among the key advantages of a decision tree model are the
ease of understanding and interpreting the results and the possibility of
adding new scenarios, which helps to predict an unpredicted outcome.

2.3.3. Model configuration
The predictive modelling for estimating the WQI for the Klang River

is investigated based on six predictors, i.e. BOD, COD, DO, SS, pH, and
NH3-N. These input variables were normalised using the Z-transfor-
mation before being fed into the model. The normalisation subtracts the
mean of the data from all values and divides them by the standard
deviation. Hence, the distribution of the data has a mean of zero and a
variance of one. The purpose of Z-transformation is to ensure the pre-
servation of the original data distribution and to ensure that the mod-
elling is not affected by outliers (Kotu and Deshpande, 2014).

In this study, data from the years 2001 to 2009 were used for
training and validation (95%), whilst the data for the year 2010 (5%)
were kept for testing. Fig. 5 illustrates the stages and sections of the
modelling. Several parameters have to be set when using decision tree
as the predictive modelling in the RapidMiner Studio (Hofmann et al.,
2013). This software has several parameters to be configured, such as
the criterion where it is set to “gain ratio”. Gain ratio is a splitting
feature that adjusts the information gain for each feature to allow for
the breadth and uniformity of the feature values. Maximum depth is the
parameter used to restrict the depth of the decision tree, where this
value is set to (−1) in order to not impose any bound on the depth of
the tree. Another important parameter used for the pessimistic error

calculation of pruning is the confidence level, which is set to be 0.25.
The present study employs the pre-pruning parameters, which re-

present the stopping criteria. The pre-pruning is represented by minimal
gain and was set to be 0.01, minimal leaf size is two, minimal split size is
two, and the number of pre-pruning alternative is two. These configura-
tions were set to ensure that the modelling is able to maximise the analysis
of parameters correlated with the WQI in order to obtain a more accurate
prediction (Kotu and Deshpande, 2014). Fig. 5 and Fig. 6 show the model
configuration in the RapidMiner Studio. These figures show the flow work
of model inside the RapidMiner interface which is represented by two
main stages training and testing.

2.3.4. Modeling scenarios
During the setting up of the modelling, it was conducted with all six

water quality parameters as input variables to determine the model
performance. Since the main purpose of this research is to use the de-
cision tree to predict the WQI based on a smaller number of parameters
as inputs to achieve higher effectiveness and efficiency in determining
the WQI of rivers, this predictive modelling focused more on prediction
accuracy based on lower number of inputs.

Each scenario was developed by reducing the number of water
quality parameters (as model input parameters) to five, four, and three
instead of the six parameters stipulated in the DID Manual. The suc-
cessful implementation of the proposed decision tree model with a
minimal number of model input variables would result in minimal cost
of WQI prediction for river water quality. This could also reduce the
time taken to analyse the water sample in the laboratory to determine
the value of the cut-off parameters. Furthermore, these scenario ana-
lyses would also allow for the identification of the correlation between
water quality parameters and the WQI classes.

In the first scenario, five parameters were used as inputs and one
parameter was omitted for each case. The second scenario has four inputs,
thereby providing fifteen possibilities with various configuration of water
quality parameters. In the third scenario, the number of neurons was de-
creased to three, and thus, increasing the total number of experiments

Fig. 5. Model configuration and stages in RapidMiner Studio software. The abbreviations shown are the common RapidMiner commands: exa, mod, ori, lab, tes, per,
res denote examples, model, original, laboratory, test, performance and residual, respectively.
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within this scenario to 20 with more possibilities of input combinations.
Tables 3–5 show all combinations of input data for the three scenarios. The
monthly river water quality data for the Klang River basin between 2001
and 2010 were Z-transformed to speed up the training process and reduce
the influence of outliers in the dataset. This decision tree modelling was
run with infinity depth, confidence level of 0.25, and minimal gain of 0.1
to ensure that the model is able to achieve a higher degree of analysis
accuracy. The optimal architecture was determined based on the predic-
tion accuracy with a minimum benchmark of 75%.

2.3.5. Model performance criteria
The accuracy of the predictive modelling was evaluated based on three

criteria in order to measure the performance of the model. The measure-
ment of performance does not specifically look at the difference between
the traditionally computed and the predicted WQI values. Instead, the
investigation focused on the similarity of class between the predicted and
the WQI values obtained using Eq. (1). Classical statistical measures such
as, mean absolute error, maximum error and mean square error are not
required for the comparison of error between the actual and the predicted
WQI values. For example, the range for Class IV WQI is set between 31.0
and 51.9. If the computed value, using the WQI equations, is 50 (which
indicates Class IV) and the predicted value is 32 (which falls under the
Class IV), then the model is deemed to be acceptable even though the
difference between 50 and 32 is rather high and has a poor prediction
error in terms of the classical error measure evaluation. On the other hand,
if the measured WQI is 30 (Class V) and the predicted WQI is 32 (Class IV),
then the model has made an inaccurate prediction of the WQI class even
though the difference between the two values is small.

In classification or class prediction, it is essential to evaluate the model
performance at the overall level, but also at each class individually.
Therefore, there is a need to examine all the possible cases that designate
the relationship between the predicted WQI class as the model output and
the actual WQI class. In fact, there are four cases that could occur and
should be taken into account to measure the model performance at each
class individually. The first case is a true positive, which is correctly iden-
tifying the WQI class. In this case, the model result is one that detects the
class condition when the condition is present. The second case is the true
negative test that the result is one that does not detect the condition when
the condition is absent, in other words, the model output result correctly
rejects the WQI class. It should be noted that the second case condition did
not occur in this study as WQI class should fall in one of the five classes
and never be in neutral condition. The third case of condition is the false
positive (incorrectly identified condition) which is experienced when the test
result is one that detects the condition when the condition is absent.
Finally, the fourth case is the false negative test result is one that does not
detect the condition when the condition is present, this case represents the
incorrectly rejected condition.

Let TP denotes the number of true positives, TN the number of true
negatives, FP the number of false positives, and FN the number of false
negatives as shown in Fig. 7. The overall prediction accuracy for the
model could be calculated as the sum of TP for all classes (the sum-
mation of all number in the yellow cells) divided by the total number of
the tested data (44 in our study).

In order to carry out the model performance analysis at the class level
to examine the performance of the model at each class individually, the
following evaluation measures could be used. Sensitivity measures (Class
recall) the ability of a test to detect the condition when the condition is
present. Thus, Sensitivity=TP/(TP+FN). Predictive value positive (Class
precision) is the proportion of positives that correspond to the presence of
the condition. Thus, Predictive value positive=TP/(TP+FP).

The performance vector was calculated based on the confusion matrix
shown in Table 6. The model performance was evaluated using three types
of assessment, including prediction accuracy, class precision, and class
recall. Equation 2 was used to estimate the prediction accuracy, which is
defined as the ability of the classifier to select all cases that need to be
selected and reject all cases that need to be rejected. For a classifier with
100% accuracy, this would imply that false negative= false positive=0.
Precision is defined as the proportion of cases found that were actually
relevant based on the calculation made using Eq. (3). Finally, the recall is
expressed by Eq. (4), which is defined as the proportion of the relevant
cases that were actually found among all the relevant cases.

The formulae for performance criteria are expressed as follows:

= ×

=

=Prediction accuracy
True positive

Total Number of testing data
100% n

1, 2, 3. ..5

all classes
Class
n

1

(2)

=
+

×Class precision
True positive

True positive False positive
100%class n

class n

class n class n

(3)

=
+

×Class recall
True positive

True positive False negative
100%class n

class n

class n class n (4)

3. Results and discussion

The proposed decision tree model with the three different scenarios
was developed. In order to evaluate each possible input combination for
scenario, 6, 15, and 20 possible combination cases were assessed for the
three scenarios, respectively. The detailed results for each scenario are
presented separately in Appendix A, B, and C for first, second and third
scenario, respectively, but the main findings are presented below.

Fig. 6. Model configuration within cross validation in RapidMiner Studio. Note, refer to Fig. 5 for abbreviations.

Table 3
Input data with five water quality parameters, with the left-out parameter
marked with “X”.

5 Parameters
Scenario Water Quality Parameter

BOD COD SS DO pH NH3-N

1-1 X
1-2 X
1-3 X
1-4 X
1-5 X
1-6 X
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3.1. First scenario: Input data with five water quality parameters

In the first scenario, the prediction model was run based on five
different water quality parameters with six different combinations as
shown in Table 7. Data shows that scenario 1-1 (i.e. without NH3-N)
produced the best result with an accuracy of 84.09%. As can be seen in
Table A.1, the best performance for this combination is supported by
the class recall for true III, true IV, and true V (which achieved 84.85%,
100.00%, and 100.00%, respectively), and in class precision for pre-
dicted III, predicted IV and predicted V (93.99%, 61.54%, and 100.00%
respectively). Table A.2 shows that although not all data were accu-
rately predicted, the false predicted data in Test 1-1 were still close to
its original class, for example, two data for true II fall in the predicted
III, and five data for true III fall in the predicted IV.

In this scenario, five other tests were not able to achieve an accuracy of
at least 75.00%. Interestingly, the model with these configurations was not
able to accurately predict the most critical Class V. Tables A.3–A.6 show that
all the data for true V fall in the predicted III, which is a wide difference

between the true and the predicted values. Class V is the lowest class in the
WQI and it is very crucial for this class to be correctly identified so that
immediate actions can be taken to reduce the effect of the unacceptable
limits for the quality of water on the environment and human use.

Based on the analysis, the influence of each water quality parameter was
investigated in this predictive modelling. Result show that NH3-N has the
least effect on the predicted WQI, with notable high accuracy (84.09%) for
Test 1-1. This is a somewhat positive outcome considering the high cost for
experimental analysis of NH3-N. The cost for laboratory analysis could be
reduced by omitting theNH3-N parameter from themodelling input variables.

3.2. Second scenario: Input data with four water quality parameters

The main objective for carrying out scenario II is to improve model
performance by reducing the number of input variable for the model.
By using only four water quality parameters, different combinations of
inputs as shown in Table 8 were tested. The accuracy of this modelling
was determined based on the percentage of prediction accuracy, fol-
lowed by the percentage of class precision and class recall. The 15
combinations for water quality parameters are given in Appendix B.
Scenario 2-1 provides the best performance with a prediction accuracy
of 81.82%, with BOD, COD, SS, and DO as the four inputs. It should be
noted that, besides this combination, scenarios 2-7 and 2-15 were able
to achieve a prediction accuracy benchmark of 75.00%. Interestingly,
the same parameters in both tests are NH3-N and SS.

Table B.1 shows that scenario 2-1 achieved a class precision of
93.10% for predicted III, 57.14% for predicted IV, and 100.00% for
predicted V. The achievement of class recalls for true III, true IV, and
true V were 81.82%, 100.00%, 100.00%, respectively. In contrast to
scenario 1-1, scenario 2-1 omitted pH from the inputs of the modelling,
and still showed a promising result for this predictive modelling (36 out
of 44), which is very close to the prediction accuracy of scenario 1–1
(37 out of 44). The results for scenarios 2-7 and 2-15 are shown in Table
B.7 and Table B.15, respectively. Even though both scenarios achieved
a prediction accuracy of 75.00%, they were not able to predict the most
critical Class V. The results for both scenarios for true V fall in the
predicted III, which is a wide deviation from its original class. Hence,
both input combinations for scenarios 2-7 and 2-15 are not qualified for
this predictive modelling (see Tables B.2–B.6, B.10–B.14 and C1).

The results of the analysis in the second scenario further proved that
NH3-N is the least effective parameter correlated to the prediction of WQI.
Additionally, pH has been shown to be a parameter with low correlation
(to a certain extent) to WQI prediction. In Malaysia, the pH of the dis-
charge into rivers is strictly monitored and is the easiest parameter to be
monitored as its measurement can be easily obtained in-situ and without
further laboratory analysis. Moreover, since Malaysia is a tropical country,
which receives plenty of rainfall throughout the year, the value of pH in
rivers can be easily diluted and neutralised by the rainfall. Hence, the
omission of pH and NH3-N as input data for predictive modelling have no
effect on the prediction of WQI class.

In addition to the least effective parameter correlated to WQI pre-
diction, this scenario is also able to identify the most effective para-
meter correlated with WQI. Analysis of the lowest prediction accuracy
across the 15 set of combinations show that scenario 2-12, which ex-
cludes BOD and DO from the predictive model, was able to achieve a
prediction accuracy of only 25.00%. This proves that BOD and DO are
important parameters in the determination of WQI.

3.3. Third scenario: Input data with three water quality parameters

In the third scenario, the number of inputs was further reduced to
three parameters. A total of 20 different combinations were tested using
the predictive modelling and the results are presented in Table 9. By using
only three parameters to predict WQI, scenarios 3-2 and 3-20 were able to
achieve a prediction accuracy of 77.27%, which is slightly higher than the
benchmark of 75%. The parameters used in scenario 3-2 were BOD, COD,

Table 4
Input data with four water quality parameters, with the left-out parameters
marked with “X”.

4 Parameters
Scenario Water Quality Parameter

BOD COD SS DO pH NH3-N

2-1 X X
2-2 X X
2-3 X X
2-4 X X
2-5 X X
2-6 X X
2-7 X X
2-8 X X
2-9 X X
2-10 X X
2-11 X X
2-12 X X
2-13 X X
2-14 X X
2-15 X X

Table 5
Input data with three water quality parameters, with the left-out parameters
marked with “X”.

3 Parameters
Scenario Water Quality Parameter

BOD COD SS DO pH NH3-N

3-1 X X X
3-2 X X X
3-3 X X X
3-4 X X X
3-5 X X X
3-6 X X X
3-7 X X X
3-8 X X X
3-9 X X X
3-10 X X X
3-11 X X X
3-12 X X X
3-13 X X X
3-14 X X X
3-15 X X X
3-16 X X X
3-17 X X X
3-18 X X X
3-19 X X X
3-20 X X
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and DO whilst those in scenario 3-20 are DO, pH, NH3-N.
Although both tests showed good ability to predict WQI, scenario 3-

2 shows a better result in contrast scenario 3-20 with regard to the
accuracy of class precision and class recall. Table C.2 shows that sce-
nario 3-2 achieved a precision of 92.59%, 50%, and 100% for the
prediction of Class III, IV, and V, respectively. For class recall, the test
achieved a prediction of 75.76% for true III, 100.00% for true IV, and
100.00% for true V. In addition, the false predicted classes are still close
to their original classes. For example: two data points for class II fall in
predicted class III and eight data points for class III fall in predicted
class IV (see Tables C.3–C.19).

The result for scenario 3-20 is presented in Table C.20; it shows that
two data points for true II fall in predicted III and predicted IV, four data
points for true III fall in predicted IV, three data for true IV fall in predicted
III, and the only data for true V fall in predicted III. The accuracy for class

precision is 85.29%, 50.00% and 0.00% for predicted II, predicted IV and
predicted V, respectively. The accuracy of class recall is 87.88%, 62.50%,
and 0.00% for true III, true IV and true V, respectively. Results of the
analysis show that even though the parameters used in scenario 3-20 were
able to achieve a high accuracy, they were disqualified from being used in
this predictive modelling since they were not able to accurately predict the
most critical Class V. Additionally, the false predicted data show a high
deviation from their true value.

The third scenario proved that NH3-N has the lowest correlation with
the prediction of WQI (based on scenario 3-2). By excluding NH3-N, WQI
can be predicted without much loss of information. In other words, BOD,
COD, and DO are the most important parameters (corresponding to the
relative weights given in Eq. (1)), which have a higher correlation with
WQI prediction. This is proven by the result for scenario 3-19, which
achieved 31.82% prediction accuracy when using SS, pH, and NH3-N as its
input data. Not only did the test achieve low prediction accuracy, most of
the false predicted data deviate significantly from their true value.

The data-driven model based on decision tree procedure can be con-
sidered as a further step for achieving an adaptable water quality index
prediction model. Furthermore, the utilization of such modelling procedure
is not only able to accurately predict the water quality index but also able to
improve the water quality monitoring program by reducing the time-con-
suming and costly experimental testing for each parameter, particularly
NH3-N. Additionally, the utilization of decision tree to predict water quality
index could produce accurate results by allowing the use of a larger data-
base for existing river water quality in Malaysia. The development of the
proposed model in other tropical regions would allow for improvement of
the present modelling system, which would then result in higher accuracy.

The ability of the proposed model to predict the class of water quality
(through the calculation of WQI’s class) is believed to have similar potential
in predicting the indices-based river (and ecological) conditions, such as
Belgium Biotic Index (BBI), Species at Risk Index (SPEAR) and German
Saprobic Index (GSI) (von der Ohe et al., 2007). Interestingly, the Universal
Water Quality Index (UWQI) utilises 12 parameters of water quality, in-
tended for the abstraction of drinking water, whereby the calculated index is
categorised into three classes based on EC legislation (74/440/EEC)
(Boyacioglu, 2007). Based on the similarity in the indices calculation, we
anticipate that the proposed model’s architecture will provide a promising
approach for predicting other ecological and water quality indices.

Class 
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Positive TP FP

Negative FN TN

a) Overall prediction accuracy

b) Sensitivity measures (Class recall) c) Predictive value positive (Class precision)

Class 
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Fig. 7. Procedure for calculating a) Overall model prediction accuracy; b) Class recall and c) Class Precision.

Table 6
(2× 2) confusion matrix.

True condition (Actual)

Total population Condition
positive

Condition
negative

Predicted
condition

Predicted
condition positive

True positive False positive
(Type 1 error)

Predicted
condition
negative

False negative
(Type II error)

True negative

Table 7
Prediction accuracy of each test in the first scenario.

5 Parameters
Test Water Quality Parameter Accuracy

BOD COD SS DO pH NH3-N

1-1 X 84.09%
1-2 X 70.45%
1-3 X 68.18%
1-4 X 65.91%
1-5 X 65.91%
1-6 X 65.91%
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4. Conclusion

This research studied the use of decision tree model for water quality
index prediction in a tropical environment. The monthly water quality
data from the Klang River for a ten-year period (2001–2010) were utilized
in this research. A decision tree algorithm was developed to predict the

WQI of the Klang River by taking into account several scenarios, each of
which used varying number of water quality parameters as modelling
inputs. Three different scenarios were examined using the decision tree
model, viz those with five, four, and three water quality parameters as the
model input, with the WQI class as the target output for each scenario. In
this study, the best prediction accuracy for the first scenario is 84.09%
when NH3-N was omitted from the input variables. In the second scenario,
the best prediction accuracy of 81.82% was achieved when NH3-N and pH
were omitted from the input variables, and a prediction accuracy of
77.27% was achieved when NH3-N, pH, and SS were omitted as input
variables in the third scenario. The three results achieved a prediction
accuracy that is higher than the benchmark of 75% prediction accuracy.

This study has proven that the number of water quality parameters in a
monitoring process can be reduced. All three scenarios have shown that
NH3-N, pH, and SS have less important effect on the predicted WQI since
the prediction accuracy of the model remained above the 75% benchmark
when these parameters were omitted from the input variables. These
findings could change the way WQI class is predicted and monitored in the
future, thus allowing for better water resources management by reducing
the cost and the time involved in the monitoring process.

The decision tree model is very useful in predicting WQI since it has a
remarkable ability to simplify, analyse, and classify raw data to reduce its
complexity and non-linearity. However, a more in-depth study needs to be
carried out to further improve the prediction accuracy of the model. This
predictive model could be improved by conducting an extensive study of
the correlation between water quality parameters. Integration with other
data pre-processing algorithm might be able to reduce the complexity of
the data, hence improve the ability of the decision tree process to achieve
better prediction accuracy. Although the proposed model has worthy
shown appropriate prediction accuracy for WQI class for Malaysian con-
ditions, the model in its present architecture may not directly apply to
other regions without case-specific modifications.

A major outcome from the current research is that the proposed
WQI’s class prediction model can be of global interest, wherever the
decision-makers, the regulators or other stakeholders are interested in
identifying the WQI class rather than the actual value of WQ para-
meters. The flexibility given within the proposed prediction model’s
structure to identify the specifics, e.g. number of classes, variables,
ranges… etc. is an essential step for model developers to adapt the
model to their own case study’s conditions.
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Appendix A:. Results for scenario I

Table 8
Prediction accuracy of each test in the second scenario.

4 Parameters
Test Water Quality Parameter Accuracy

BOD COD SS DO pH NH3-N

2-1 X X 81.82%
2-2 X X 70.45%
2-3 X X 50.00%
2-4 X X 54.44%
2-5 X X 63.64%
2-6 X X 65.91%
2-7 X X 75.00%
2-8 X X 61.36%
2-9 X X 65.91%
2-10 X X 65.91%
2-11 X X 59.09%
2-12 X X 25.00%
2-13 X X 43.18%
2-14 X X 63.64%
2-15 X X 75.00%

Table 9
Prediction accuracy of each test in the third scenario.

3 Parameters
Test Water Quality Parameter Accuracy

BOD COD SS DO pH NH3-N

3-1 X X X 40.91%
3-2 X X X 77.27%
3-3 X X X 65.91%
3-4 X X X 63.64%
3-5 X X X 36.36%
3-6 X X X 50.00%
3-7 X X X 45.45%
3-8 X X X 63.64%
3-9 X X X 59.09%
3-10 X X X 72.73%
3-11 X X X 31.82%
3-12 X X X 56.82%
3-13 X X X 31.82%
3-14 X X X 61.36%
3-15 X X X 65.91%
3-16 X X X 72.73%
3-17 X X X 25.00%
3-18 X X X 31.82%
3-19 X X X 31.82%
3-20 X X X 77.27%

Table A.1
Class precision and class recall accuracy for Test 1-1.
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Appendix B:. Results for scenario II

Table A.2
Class precision and class recall accuracy for Test 1-2.

Table A.3
Class precision and class recall accuracy for Test 1-3.

Table A.4
Class precision and class recall accuracy for Test 1-4.

Table A.5
Class precision and class recall accuracy for Test 1-5.

Table A.6
Class precision and class recall accuracy for Test 1-6.

Table B.1
Class precision and class recall accuracy for Test 2-1.

J.Y. Ho, et al. Journal of Hydrology 575 (2019) 148–165

158



Table B.2
Class precision and class recall accuracy for Test 2-2.

Table B.3
Class precision and class recall accuracy for Test 2-3.

Table B.4
Class precision and class recall accuracy for Test 2-4.

Table B.5
Class precision and class recall accuracy for Test 2-5.

Table B.6
Class precision and class recall accuracy for Test 2-6.

Table B.7
Class precision and class recall accuracy for Test 2-7.
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Table B.8
Class precision and class recall accuracy for Test 2-8.

Table B.9
Class precision and class recall accuracy for Test 2-9.

Table B.10
Class precision and class recall accuracy for Test 2-10.

Table B.11
Class precision and class recall accuracy for Test 2-11.

Table B.12
Class precision and class recall accuracy for Test 2-12.

Table B.13
Class precision and class recall accuracy for Test 2-13.
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Appendix C:. Results for scenario III

Table B.14
Class precision and class recall accuracy for Test 2-14.

Table B.15
Class precision and class recall accuracy for Test 2-15.

Table C.1
Class precision and class recall accuracy for Test 3-1.

Table C.2
Class precision and class recall accuracy for Test 3-2.

Table C.3
Class precision and class recall accuracy for Test 3-3.

Table C.4
Class precision and class recall accuracy for Test 3-4.
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Table C.5
Class precision and class recall accuracy for Test 3-5.

Table C.6
Class precision and class recall accuracy for Test 3-6.

Table C.7
Class precision and class recall accuracy for Test 3-7.

Table C.8
Class precision and class recall accuracy for Test 3-8.

Table C.9
Class precision and class recall accuracy for Test 3-9.

Table C.10
Class precision and class recall accuracy for Test 3-10.
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Table C.11
Class precision and class recall accuracy for Test 3-11.

Table C.12
Class precision and class recall accuracy for Test 3-12.

Table C.13
Class precision and class recall accuracy for Test 3-13.

Table C.14
Class precision and class recall accuracy for Test 3-14.

Table C.15
Class precision and class recall accuracy for Test 3-15.

Table C.16
Class precision and class recall accuracy for Test 3-16.
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