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Abstract—This paper develops a state-of-charge (SOC) estima-
tion model for a lithium-ion battery using an improved extreme
learning machine (ELM) algorithm. ELM is suitable for an SOC
estimation since the ELM algorithm has fast estimation speed, good
generalization performance, and high accuracy. However, the per-
formance of ELM is highly dependent on training accuracy and the
number of neurons in a hidden layer. Hence, a gravitational search
algorithm (GSA) is applied to improve the ELM computational in-
telligence by searching for the optimal value hidden layer neurons.
The optimal ELM-based GSA model does not require internal bat-
tery knowledge and mathematical model for an SOC estimation.
The model robustness is validated at different temperatures using
different electric vehicle drive cycles. The performance of the ELM-
GSA model is verified with two popular neural network methods:
back-propagation neural network (BPNN) and radial basis func-
tion neural network (RBFNN). The results are evaluated using
different error rates and computation costs. The results demon-
strate that the ELM-based GSA model offers a higher accuracy
and lower SOC error rate than those of BPNN-based GSA and
RBFNN-based GSA models. Furthermore, a detailed comparative
study between the proposed model and existing SOC strategies is
conducted, which also demonstrates the superiority of the proposed
model.

Index Terms—Electric vehicle, extreme learning machine, gravi-
tational search algorithm, lithium-ion NMC battery, state of charge
(SOC).
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I. INTRODUCTION

G LOBAL emissions and climate change problems are a se-
rious threat to human life. In order to reduce the carbon

emissions, many developed countries around the world have al-
ready announced to substitute diesel- and petrol-based vehicles
with electric vehicles (EVs) in near future [1]. However, the EV
is still struggling to become a popular and efficient mode of
transportation due to the short travel distance and limited life-
cycles of energy-storage devices [2]. The performance of an EV
depends on reliability, safety, driving range, and power manage-
ment system, and most importantly, it is highly dependent on
energy-storage functionality to predict and control critical health
issues. Hence, the research on energy-storage technologies in
EVs needs intensive studies to improve the performance [3]. In
addition, further, development is required to increase the storage
capacity, minimize the catastrophic failures, and incorporate a
substantial balance to meet the operational requirements.

The lithium-ion battery has superior features such as long
lifespan, high voltage and energy capacity, fast changing, and
low-memory effect characteristics that outperform other energy-
storage devices [4]. The prognostic model development for a
lithium-ion battery with the estimation of the state-of-charge
(SOC), state-of-health (SOH), and remaining useful life predic-
tion has been researched thoroughly in recent days. Among the
various components of the battery management system (BMS),
SOC is a vital parameter of the lithium-ion battery, which indi-
cates how much charge is available inside a battery cell. SOC
delivers information about the driving mileage of EVs. SOC
is significant to control the overcharging and overdischarging
of lithium-ion cells. However, there are internal and external
challenges, which cause difficulties to develop an accurate SOC
estimation model. The internal challenges relate to the lithium-
ion battery material, self-discharge, aging, thermal runway, and
hysteresis whereas the external issues are the ambient temper-
ature variation and charging approach. The lithium-ion battery
is very sophisticated to the said challenges. Therefore, further
research on SOC model development is required to extend
the battery lifecycles and improve the EV performance. The
mathematical expression of SOC is shown as [5]

SOC = SOC0 − 1
Cn

∫
i · ηdt (1)
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where SOC0 and SOC represent the initial value and estimated
value, respectively, Cn denotes the nominal capacity, t is the
duration of battery charging and discharging, and η denotes the
coloumbic efficiency.

Different SOC estimation approaches have been highlighted
in many articles. However, each approach has some drawbacks.
The Coloumb counting is the easiest method that can estimate
SOC using current integration [6]. Nevertheless, the Coloumb
counting method has cumulative effect problems [7]. Open cir-
cuit voltage (OCV) holds a relationship with SOC. Nonetheless,
the OCV method needs a lengthy duration to reach a balanced
condition. The Kalman filter is a well-known method for SOC
estimation due to its capability to reduce high fluctuation and
noises in current and voltage measurements [8]. Nevertheless,
the Kalman filter depends on the battery model and mathe-
matical relationship, which may not be appropriate for highly
nonlinear systems. Fuzzy logic and artificial neural network use
computational intelligence to estimate SOC with noise, aging,
and temperature effects [9]. Nonetheless, both methods need a
large memory device and an expensive processor for implemen-
tation.

To overcome the above-mentioned problems, an optimized
intelligent algorithm is proposed under the EV load profile
with temperature effects. The machine-learning algorithms are
useful and effective in SOC estimation since they can predict
battery nonlinear dynamics without the need of any mathemat-
ical and battery model. They also have efficient computational
capability that can deliver accurate results in changing condi-
tions such as battery aging and ambient temperature. Several
machine-learning algorithm based SOC estimation techniques
have been explored such as radial basis function neural network
(RBFNN) [10] and back-propagation neural network (BPNN)
[11]. However, the network parameter selection in the said
methods was performed using ineffective trial and error method,
which was inefficient and wasted a lot of time and human
energy. Furthermore, the algorithms suffered from low or high
variance in data computation and slow computation. To address
the above-mentioned challenges, this paper has proposed an
extreme learning machine (ELM), which has good learning
skill, high accuracy, and fast response in training execution
[12]. Nonetheless, the ELM algorithm needs to find out the best
value of neurons in the hidden layer to achieve high accuracy
in SOC estimation. Hence, the gravitational search algorithm
(GSA) is employed to improve the computational intelligence
of the ELM algorithm. Du et al. [13] estimated SOC using the
ELM method for a lithium-ion battery. Nonetheless, the hidden
neurons were determined randomly, which was not reasonable
for obtaining good results. Therefore, this paper has developed
an improved SOC estimation model using ELM-based GSA by
selecting appropriate activation function, training algorithm,
and optimal number of hidden neurons to obtain high accuracy.
This paper offers the following novel contributions.

1) A new ELM-based GSA model has been developed, which
can evaluate SOC accurately and directly by measuring
signals from the battery such as current, voltage, and tem-
perature, hence avoiding added filter and algorithm such
as the Kalman filter used in the conventional approach.

Fig. 1. Single-layer ELM model structure.

2) The input weights and the hidden layer are estimated by
the self-learning ELM algorithm. The process is com-
pletely different from the electrochemical battery model,
which needs practical experience and considerable time
for parameter estimation.

3) The conventional GSA-based SOC estimation model uses
an exhaustive trial and error approach to search for the
hidden neurons. The outcomes of this traditional approach
are not satisfactory due to the underfitting and overfitting
problems. Therefore, the ELM algorithm is further im-
proved by employing GSA to enhance the computational
intelligence, robustness, and accuracy.

4) ELM has faster computation speed than those of other
machine-learning methods, as will be revealed in the re-
sults section. Nonetheless, the standard or random value
of hidden neurons causes substantial delay in estimation
speed while considering the battery uncertainties includ-
ing temperatures, drive cycles, and noises. The implemen-
tation of ELM with GSA has addressed the problem by
determining the appropriate value of hidden layer neu-
rons accordingly in different operating conditions, thus
achieving fast acceleration in computation speed.

5) It will be shown that ELM has better generalization per-
formance than those of other machine-learning algorithms
at different conditions.

II. EXTREME LEARNING MACHINE

ELM is appropriate for predicting outcomes in complex and
nonlinear systems [14]. ELM has a number of advantageous
features such as better scalability, better generalization perfor-
mance for regression and classification, better approximation of
any target continuous function, lower computation complexity,
and faster learning speed, which help to deliver better estima-
tion results than those of other machine-learning algorithms
[15], [16]. ELM is designed using three layers, one input layer,
one hidden layer, and one output layer. The execution of ELM is
performed by randomly assigning the input weights and hidden
layers biases. The neurons in hidden layers are set adaptively.
The structure of ELM is shown in Fig. 1. The steps of ELM are
described as follows [17].
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1) At first, the parameters are assigned randomly. The input
weight vector and hidden layer bias are represented as
xi = [xi1, xi2, . . . , xiN ]T and bi , respectively, where i
is the number of neurons in the hidden layer. The hidden
neurons are assigned as Ñ . The value of Ñ can be changed
in order to achieve reasonable accuracy.

2) Calculate the output matrix of the hidden layer. The math-
ematical expression is represented by

Ñ∑
i=1

βifi (xi)=
Ñ∑

i=1

βif (ai · xj + bj ) = tj , j =1, . . . , N

(2)
where ai = [ai1, ai2, . . . , ain ]T represents the weight
vector that connects the input nodes and ith hidden nodes.
βi = [βi1,βi2, . . . , βin ]T represents the output weight
that connects the ith hidden layer neuron and output layer
neuron. f () is the activation function that is determined
before training. In this paper, the most popular sigmoid
function is used for the activation function [18]

f (ai · xj + bj ) =
1

1 + e−(ai ·xj +bj )

−1

,

i = 1, . . . , L, j = 1, . . . , N (3)

Equation (2) can be represented compactly as

Hβ = T (4)

where H(a1, . . . , aÑ , b1, . . . , bÑ , x1, . . . , xN )

H =

⎡
⎢⎣

f (a1 · x1 + b1) . . . f (aÑ · x1 + bÑ )
. . . . . . . . .

f (a1 · xN + b1) . . . f (aÑ · xN + bÑ )

⎤
⎥⎦

N ×N

β =

⎡
⎢⎢⎢⎢⎢⎣

βT
1

.

.

.

βT
N

⎤
⎥⎥⎥⎥⎥⎦

N ×m

T =

⎡
⎢⎢⎢⎢⎢⎣

tT1
.

.

.

T T
N

⎤
⎥⎥⎥⎥⎥⎦

N ×m

.

H is the matrix of the output layer of the neural network.
3) The hidden layer output matrix H is determined by ran-

domly allocated input weights and hidden layer biases.
Hence, the following linear equation Hβ = T is obtained:

‖H (a1, . . . , aÑ b1, . . . , bÑ ) β̂ − T‖ =

min
β

‖H (a1, . . . , aÑ , b1, . . . , bÑ ) β̂ − T‖. (5)

The least square solution is used to solve (5). The output
weight β is estimated by

β̂ = H+ T (6)

where H+ is the Moore–Penrose generalized inverse of
H [19]. The optimal solution β̂ features the lower training
error and optimal generalization performance.

It is apparent from the above-mentioned equations, ELM
needs lesser computation than those in other algorithms since it

Fig. 2. Mass effects with other masses.

uses forward pass with a series of matrix multiplications, which
results in substantial development in training speed. This unique
characteristic of GSA is very useful for estimating SOC with
high accuracy.

III. GRAVITATIONAL SEARCH ALGORITHM

Rashedi et al. [20] invented the GSA method in 2009 to
achieve an optimal solution in any complex system. They ap-
plied the concept of physics-based algorithms, such as the law of
gravity and mass interactions to develop GSA. GSA is based on
the law of Newtonian gravity and laws of motion. The principle
of GSA states that “every particle in the universe attracts every
other particle with a force that is directly proportional to their
masses and inversely proportional to the square of the distance
between them,” as expressed in the following equation [20]:

F = G
M1M2

R2
(7)

where F denotes the magnitude of the gravitational force, G
represents the gravitational constant, M1 and M2 characterize
the mass of the first and second particles, respectively, and R is
the distance between the two particles.

Newton’s second law states a relationship between accelera-
tion, force, and mass of particle, which is expressed as follows:

a =
F

m
. (8)

A new term named Gravitational constant G(t) is introduced,
which is assessed using the initial value of the gravitational
constant G(t0) and the ratio of initial time t0 and actual time t
as follows:

G (t) = G (t0) ×
(

t0

t

)
, β < 1. (9)

Fig. 2 shows how the influence of mass forces between the
particles develop the net force and acceleration.

The positions of the N number of the agents are initialized
as follows:

Xi =
(
X1

i , . . . , Xd
i , . . . , Xn

i

)
, for i = 1, 2, . . . , N (10)

where Xdi is the position of ith agent in the dth dimension and n
is the space dimension. The mathematical equations for the best

Authorized licensed use limited to: UNIVERSITY TENAGA NASIONAL. Downloaded on July 07,2020 at 02:58:03 UTC from IEEE Xplore.  Restrictions apply. 



4228 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 55, NO. 4, JULY/AUGUST 2019

and worst values and the masses of each agent are presented as

best (t) = minfitj (t) (11)

Worst (t) = maxfitj (t) (12)

mi (t) =
fiti(t) − Worst(t)
best(t) − Worst(t)

(13)

Mi (t) =
mi (t)∑N

j=1 mi (t)
. (14)

The total force F for the ith agent is evaluated based on the
gravitational constant G, position X , and acceleration a, and
then, the velocity and position are updated

G (t) = G0 e(−αt/T ) (15)

Fd
ij (t) = G (t)

Mpi×Mαj

Rij + ε

(
Xd

j (t) − Xd
i (t)

)
(16)

Fd
i (t) =

∑
j∈K best,j �=i

randj F d
ij (t) (17)

ad
i (t) =

Fd
i (t)

Mi (t)
(18)

vd
i (t + 1) = randi × vd

i (t) + ad
i (t) (19)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1) . (20)

GSA is dominant in comparison to other optimization algo-
rithms in terms of easy execution, fast learning speed, small
training error, and better generalization performance [20]. In
addition, GSA delivers straightforward solutions and does not
have issues like inappropriate learning rate, local minima, and
overfitting [21]. The flowchart of GSA is presented in Fig. 3.

IV. MODELING METHODOLOGY

First, SOC estimation for a lithium-ion battery begins with
the establishment of a battery test bench followed by data col-
lection. Beijing Dynamic Stress Test (BJDST) and US06 drive
cycles are used in this paper. SOC has a high correlation with
current, voltage, and temperatures; hence, these variables are
selected for developing the input dataset. The consecutive drive
cycles are chosen since a higher number of data are required
for data training. In order to validate the model adaptability and
robustness, the data are recorded in two different temperatures
(25 °C and 45 °C). The data normalization is executed before
the training process is started. The entire datasets of BJDST and
US06 cycles are categorized into two groups: training and test-
ing. About 70% data are employed for model training and the
remaining unseen 30% data are used for data testing. The overall
methodological framework of ELM-based GSA for SOC esti-
mation is illustrated in Fig. 4. The flowchart has three phases.
Phase 1 describes the data collection method. Phase 2 covers the
GSA execution process. Phase 3 highlights the SOC estimation
and validation process.

ELM training process is combined with GSA in order to find
the appropriate number of hidden layer neurons. The lowest fit-
ness function determines the best value of hidden layer neurons.

Fig. 3. Flow diagram of GSA.

The combination of ELM and GSA enhances the accurateness
and efficiency of SOC, which confirms the best data fitting for
the training function and delivers results with less error and less
variance. Finally, SOC is assessed with testing data and ELM
activation function together with an optimal number of neurons
achieved from GSA. After SOC estimation, the proposed model
is validated using computation cost and error rates. Finally, a
comprehensive comparative investigation between the proposed
ELM-GSA model and popular SOC estimation methods is per-
formed and analyzed.

Phase I: Phase I covers the experimental arrangement, input
variables selection, and data collection at different tem-
peratures. Three significant factors including voltage,
current, and temperature are chosen. The following
steps are conducted in Phase I.

1) The experimental setup for SOC estimation of a lithium-
ion battery is illustrated in Fig. 5. A battery test bench
was established using a battery cycler (Arbin BT2000),
lithium-ion battery, thermal chamber, and a host com-
puter. The experiment was conducted using 18 650 lithium
nickel manganese cobalt oxide (LiNiMnCoO2 or NMC).
Arbin BT2000 was employed to protect the NMC cell
from being overcharged and undercharged. The thermal
chamber was used to change the temperature as well as
to monitor and record the temperature of the NMC cell.
The SOC was examined at 25 °C and 45 °C. All the data
variations were observed in the one-second interval and
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Fig. 4. Flowchart of the ELM-based GSA model.

Fig. 5. Schematic diagram of battery test bench.

controlled by the host computer. The verification of the
proposed model in a real-time EV application was tested
using BJDST [22] and US06 [23] drive cycles. The driving
time to complete one BJDST cycle and one US06 cycle
is 916 s and 600 s, respectively [22]. Battery discharge
and data extraction were conducted using 12 consecutive
BJDST and US06 cycles.

2) BJDST and US06 cycles are loaded to extract features at
two different temperatures (25 °C and 45 °C).

3) Data normalization is important in ELM training since
it accelerates the training speed and helps the algorithm

Fig. 6. BJDST drive cycle input dataset (a) current in one cycle, (b) voltage,
and (c) voltage against SOC.

Fig. 7. US06 rive cycle input dataset (a) current, (b) voltage, (c) temperature,
and (d) voltage against SOC.

to become more efficient and robust. The normalization
data process is expressed in (21) where the length is set to
[−1,1]

x =
2 (x − xmin)
xmax − xmin

(21)

where the maximum and minimum value of the input
variable x of the ELM model is denoted by xmax and
xmin . The training and testing datasets are scaled using
the same normalization range. The input dataset of BJDST
and US06 drive cycles are shown in Figs. 6 and 7, respec-
tively.

Phase II: GSA is utilized to determine the optimal number of
hidden layer neurons. The following steps are used in
phase II.

1) First, the implementation of the GSA algorithm starts with
the setting of parameters. In this paper, the population size
(agent) and iteration number are assigned as 50 and 100,
respectively. The paper also defines the limit of hidden
layer neurons. The boundary is between “0” and “500.”

2) The agent position of hidden layer neurons is created in a
random order that is placed within the boundary range.

3) The ELM training algorithm and activation function are
executed to train the data of hidden layer neurons.

4) The fitness function of each agent is evaluated. In this
paper, the root mean square error (RMSE) is chosen as
a fitness function due to high sample dataset and random
distribution of error estimation [24].
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5) The gravitational constant G and best, worst position of
the agent are updated using (15)–(17).

6) Calculate the velocity and acceleration of agent using (19)
and (18).

7) Update agent position using (20).
8) The training algorithm and activation function are recalled

to re-evaluate the fitness function of each agent.
9) The best agent location and velocity are assessed through

all the iterations based on the lowest value of fit-
ness function. The minimum value of fitness func-
tion corresponds to the best value of hidden layer
neurons.

Phase III: Phase III is called the final stage where SOC is es-
timated with the testing data and the optimal value
of neurons achieved from GSA. The accuracy of the
ELM-based GSA model is examined by various er-
ror terms. The summary of this phase is explained
as follows.

1) The ELM algorithm takes the optimal value of hidden
neurons and initiates training process.

2) The testing data are used to monitor SOC under 25 °C and
45 °C temperatures. SOC is estimated in both BJDST and
US06 drive cycles. The estimated SOC is checked with
the reference value achieved from the Coloumb counting
method. In this paper, a correct sensor was calibrated
carefully to avoid cumulative error. Additionally, SOC
error is observed, which is calculated by the difference
between the estimated SOC and reference.

3) The effectiveness of the proposed model is evaluated us-
ing various types of error rates. The error rates include
RMSE, mean square error (MSE), mean absolute error
(MAE), and mean absolute percentage error (MAPE). The
equations of these error rates are presented as follows:

RMSE =

√
1
N

∑N

i=1
(Ies − Ia)

2

(22)

MSE =
1
N

N∑
i=1

(Ies − Ia)2 (23)

MAE =
1
N

N∑
i=1

(Ies − Ia) (24)

MAPE =
1
N

N∑
i=1

∣∣∣∣Ia − Ies

Ia

∣∣∣∣ (25)

where Ies and Ia denote the estimated value, and actual
value, respectively, and N denotes the number of obser-
vations.

V. RESULTS AND DISCUSSIONS

A. Fitness Function and Optimal Parameter

The fitness function of GSA is assessed by generating opti-
mization response curves for BJDST and US06 cycles with 50
population size and 100 iterations, as illustrated in Figs. 8 and
9, respectively. The optimization response curves are observed
at 25 °C and 45 °C temperatures. The specific iteration number

Fig. 8. Optimization response curves of BJDST cycle (a) 25 °C and (b) 45 °C.

Fig. 9. Optimization response curves of US06 cycle (a) 25 °C and (b) 45°C.

Fig. 10. SOC and SOC error comparison between ELM-GSA and ELM-PSO;
(a), (b) at 25 °C, (c), (d) at 45 °C in the BJDST cycle.

that has the lowest fitness function delivers the best value of hid-
den neurons. In the BJDST cycle, the lowest value of the fitness
function is recorded after 20 and 27 iterations at 25 °C and 45 °C,
respectively. The values of the fitness functions corresponding
to the said iterations are 2.3 × 10−3 and 1.9 × 10−3, respec-
tively. Accordingly, the hidden neurons are estimated to be 220
and 328. In the US06 cycle, 38 and 67 iterations provide the
minimum value of the fitness function amounting to 2.7 × 10−3

and 2.2 × 10−3 at 25 °C and 45 °C, respectively. The hidden
neurons associated with the stated iteration are computed to be
158 and 147. The effectiveness of GSA is compared with the
PSO algorithm using the same iteration and population size,
in order to have a fair comparison. The results show that GSA
performs better than PSO in obtaining the lowest fitness func-
tion, which ensures the high accuracy in SOC estimation. It is
also evident that the fitness function declines as the temperature
rises. The electrolyte activity increases with the rise in temper-
ature. Hence, the capacity of the battery rises as the temperate
accelerates.

B. SOC Evaluation Using ELM-GSA and ELM-PSO Model

The ELM-based GSA model examines SOC in BJDST and
US06 cycles, as shown in Figs. 10 and 11, respectively. The SOC
estimation results and SOC error rates are compared with the
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Fig. 11. SOC and SOC error comparison between ELM-GSA and ELM-PSO;
(a), (b) at 25°C, (c), (d) at 45 °C in the US06 cycle.

TABLE I
PERFORMANCE ASSESSMENT IN THE BJDST CYCLE

reference. The ampere-hour method with a calibrated current
sensor is chosen as a reference. Before loading EV drive cycles,
NMC was fully charged and the initial SOC was set to 100%. It
is seen from the figures that the estimated SOC value is almost
placed to the same line of the reference value throughout the
drive cycles, which demonstrate that the proposed model has
high robustness and low estimation error. It is also important
to monitor SOC error that signifies how much estimated SOC
deviates from the reference value. The error lies at between
−3.1% and 3.6% and −5.6% and 6.5% in BJDST and US06
cycles, respectively, at 25 °C. Nevertheless, in the ELM-based
PSO model, the SOC error is restricted to [−5.2% ∼4.7%] in
BJDST and [−7.5% ∼7%] in US06. The estimation error in
US06 is higher than that of BJDST due to the high randomness
and fluctuation of load current. It is also observed from the
figures that the SOC error declines with the rise in temperature.
The error bounds are from −2.9% to 3% in BJDST whereas in
the US06 cycle, the error bounds are from −4.8% to 5.3% at
45 °C in the ELM-based GSA model. Nonetheless, the ELM-
based PSO model examines SOC with a high error rate with
a range of [−3.7% ∼4.3%] in BJDST and [−5.5% ∼6%] in
US06. The results demonstrate that the proposed ELM-based
GSA model provides more accurate results than that of the ELM-
based PSO model. In addition, the ELM-based GSA model is
robust and efficient in SOC estimation under different EV drive
cycles and temperature conditions.

C. SOC Performance Comparison

The comparative study of SOC estimation using ELM-GSA,
BPNN-GSA, and the RBFNN-GSA models for BJDST and DST
cycle is depicted in Tables I and II, respectively. SOC estima-
tion by ELM-GSA is compared with BPNN and RBFNN, as
presented in Table I in BJDST and US06 cycles, respectively. In

TABLE II
PERFORMANCE ASSESSMENT IN THE US06 CYCLE

order to perform a fair comparison, BPNN and RBFNN methods
use similar input dataset for training and testing. Furthermore,
the hidden neurons of BPNN and RBFNN are tuned based on
GSA with the same number of iterations and population sizes. In
the BJDST cycle, ELM-based GSA achieves RMSE of 0.76%
whereas BPNN-GSA and RBFNN-GSA models obtain RMSE
of 0.95% and 1.12%, respectively, at 25 °C. However, the lower
error rates and SOC error are observed as temperature increases
from 25 °C to 45 °C. The proposed model computes RMSE
to be 0.68% at 45 °C, which is reduced by 21.8% and 29.8%
from the BPNN-GSA and RBFNN-GSA model, respectively.
An improvement is also noticed in MSE, MAE, and MAPE in
the ELM-GSA model under different drive cycles. The MSE of
the proposed model is estimated to be 0.0059% that is dropped
by 32.2% and 46.4% from BPNN-GSA and RBFNN-GSA mod-
els, respectively, at 25 °C. Similarly, about 23.6% and 35.3%
reductions are noted in BPNN-GSA and RBFNN-GSA mod-
els, respectively, at 25 °C compared with the ELM-GSA model
while assessing MAE. In addition, MAPE in BPNN-GSA and
RBFNN-GSA models become higher and raised by 3.6% and
8.1%, in comparison to the ELM-GSA model at 25 °C. The
estimation results of the proposed model are further evaluated
using the US06 cycle. RMSE in BPNN-GSA and RBFNN-GSA
models is measured to be 1.68% and 2.2%, respectively, which
is a 7.7% and 41% rise from the ELM-GSA model. Moreover,
there is a drop of 10.7% and 25.1% in MAE in the proposed
model in comparison with the other two models at 25 °C. Fur-
thermore, ELM-GSA obtains a 14.3% and 23.8% reduction in
MAPE in comparison with the other two models at 25 °C.

D. Computational Cost

In order to implement the ELM-based GSA algorithm through
the on-board BMS with low data processing, limited storage, and
power requirement, the computational cost of SOC estimation
needs to be investigated. The algorithm is executed on Core i5
2.3 GHz processor with 12 GB RAM and repeated for ten times
to achieve the average computing time. The computational cost
of SOC estimation comprises both training and testing times
[25]. The results displayed in Table III demonstrate that the
ELM-based GSA has a fast response to data training whereas
BPNN and RBFNN models need a long time in training for
weight and bias upgradation. Since the average execution time
is less than 1 s, the proposed ELM-based GSA model for SOC
estimation is verified to be appropriate for on-board BMS im-
plementation.
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TABLE III
COMPUTATIONAL COST IN BJDST AND US06 DRIVE CYCLES

Fig. 12. SOC estimation and SOC error with and without noise under (a), (b)
DST cycle, (c), (d) FUDS cycle, and (e), (f) US06 cycle.

E. Robustness Against Different Testing Dataset

The robustness of the ELM-based GSA model is validated
with different testing drive cycles. The model is trained by a
BJDST cycle and then tested by Dynamic Stress Test (DST)
[26], Federal Urban Driving Schedule (FUDS) [27], and the
US06 cycle at 25 °C, as shown in Fig. 12.

Moreover, low sensor precision and electromagnetic inter-
ference might result in inaccurate battery data measurements.
Therefore, it is important to evaluate the robustness against the
measurement noise. The common white Gaussian noise with
zero mean is added to the measured values to evaluate the pro-
posed model suitability in the real world. A standard random
noise of 0.1 A and 0.01 V is added to current and voltage
measurements, respectively. Furthermore, a 0.1 A and 0.01 V
positive bias noise is injected to the current and voltage mea-
surements. Due to the high nonlinearity of current signal in the
drive cycles, high error spike is noticed after certain intervals.
Hence, a moving average filter is used to reduce the maximum
absolute error and smooth out the estimated SOC. It is noticed in
Fig. 12 that the SOC error bounds in DST, FUDS, and US06 are
[−2.3∼2.7], [−3.1∼3.2] and [−4.8∼5.5], respectively. More-
over, the estimated SOC by three drive cycles are also almost

Fig. 13. SOC robustness comparison under different drive cycles.

aligned with the actual SOC. However, a few oscillations are
observed in SOC estimation with the noise effect inclusion.
Likewise, there is a small rise in the SOC error when the ran-
dom noise and bias noise are considered. Although there is a bit
increase in the SOC error rate, the performance inconsistency is
within the satisfactory limit. To sum up, the proposed model has
proven to be a generalized machine-learning algorithm, which
has strong robustness not only under different drive cycles but
also against the measurement noise.

The robustness of the ELM-GSA model is further checked
with the BPNN-GSA and RBFNN-GSA models under different
testing datasets. Fig. 13 shows the comparative analysis where
performance is assessed in terms of RMSE and maximum SOC
error without noise effect at 25 °C.

It is observed from Fig. 13 that there is a significant perfor-
mance improvement in the ELM-GSA model, having RMSE
of 1.1%, 1.4%, and 1.8% in DST, FUDS and US06 cycles, re-
spectively. However, the BPNN-GSA and RBFNN-GSA models
achieve a fairly high RMSE, amounting to 3.2%, 3.5%, 5.4%
and 3.9%, 4.4%, 5.9% in DST, FUDS, and US06 cycle, respec-
tively, which is approximately 2–3 times as much as the ELM-
GSA model. The proposed ELM-GSA model also performs
satisfactorily in achieving the maximum SOC error, which is
limited between 2.6% and 5.4% under different drive cycles.
Nevertheless, the maximum error rate is increased substantially
and is bounded from 4.8% to 8.4% and from 6.2% to 8.9%
in the BPNN-GSA and RBFNN-GSA models, respectively. On
a whole, the ELM-GSA model has better results on accuracy
and robustness than those of the BPNN-GSA and RBFNN-GSA
models.

VI. COMPARATIVE VALIDATION WITH OTHER METHODS

The accuracy and robustness of the ELM-GSA method is
further validated by investigating the SOC error terms between
the developed model and other prominent SOC methods. Seven
recent and prominent studies including backtracking search al-
gorithm (BSA), Kalman filter, fuzzy logic, neural network, deep
learning, and support vector machine are considered for com-
parative evaluation, as presented in Table IV. It is evident from
Table IV that the ELM-based GSA model has a better perfor-
mance and robustness than those of other existing approaches
under different operating conditions. For instance, the RMSE
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TABLE IV
COMPARATIVE PERFORMANCE ASSESSMENT OF SOC ESTIMATION

using BPNN with the BSA model is estimated under 2% in
the FUDS cycle. Nonetheless, the ELM-based GSA model de-
livers more accurate SOC estimation results, with RMSE be-
ing less than 1.5% in FUDS cycles. Similarly, the ELM-based
GSA model is dominant in comparison to deep-learning method,
fuzzy logic, Kalman filter, H� filter, and SVM methods.

VII. CONCLUSION

The overall contribution is the development of an intelligent
SOC estimation model using ELM with GSA that obtains im-
proved performance in improving the robustness, increasing the
accuracy, and accelerating the estimation speed under differ-
ent EV drive cycles, temperatures, and measurement noises.
The performance of GSA is compared with the PSO algorithm,
where GSA outperforms PSO in reaching the lowest fitness
function. The robustness of the developed model is verified us-
ing two EV drive profiles at different temperatures. The SOC
accuracy is improved significantly with RMSE below 1% in
the BJDST cycle and 1.6% in the US06 cycle. Moreover, the
computation speed is achieved within one second. In addition,
the proposed model shows superior performance when it is val-
idated with different drive cycles and noise effects. RMSE and
maximum SOC error are estimated below 2% and 5.5%, respec-
tively. A detailed comparative investigation in Table IV also
indicates that the developed model is dominant in comparison
to other approaches in obtaining high adaptability, efficiency,
precision, robustness, and estimation cost. Our future research
will assess SOH for the lithium-ion battery with aging effects.
Besides, the future work will compare the ELM model based
SOC estimation performance with other machine-learning ap-
proaches. Moreover, the comparative performance evaluation of
GSA with other optimization techniques will also be studied.
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