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Abstract—This paper deals with the prediction of the transient 

stability of power systems using only pre-fault and fault duration 

data measured by Wide Area Measurement System (WAMS). In 

the proposed method, the time-synchronized values of voltage 

and current generated by synchronous generators (SGs) are 

measured by Phasor Measurement Units (PMUs) installed at 

generator buses, and given as input to the proposed algorithm in 

order to extract a proper feature set. Then, the proposed feature 

set is applied to Support Vector Machine (SVM) classifier to 

predict the transient stability status after fault occurrence and 

before fault clearance. The robustness and accuracy of the 

proposed method has been extensively examined under both 

unbalanced and balanced fault conditions as well as under 

different operating conditions. The results of simulation 

performed on an IEEE 14-bus test system using DIgSILENT 

PowerFactory software show that the proposed method can 

accurately predict the transient stability status against different 

contingencies using only pre-disturbance and fault duration data. 

Keywords-transient stability; support vector machines; phasor 

measurement units. 

I. INTRODUCTION 

In recent years, due to the increase in load demand, power 
systems operate near the stability boundaries that may lead to 
instability or even blackouts after a fault occurrence [1,3]. 
Although power systems are designed to be immune against 
different disturbances, some unexpected ones can lead to 
angular, frequency or voltage instability [4-7]. Usually, rotor 
angle instability which is also popularly referred to as transient 
instability occurs due to large disturbances like three-phase 
short circuit which depicts itself with an periodic or aperiodic 
angular separation of some SGs from other ones [7,8]. 

In order to prevent system instability, operators should 
execute optimum remedial actions before the operating point 
leaves the stability boundary. In this respect, early assessment 
of stability status and timely execution of these actions are of 
great importance.   

Transient stability assessment methods may be divided into 
two categories which include detection and prediction of 
stability status. In detection methods, the required data is 
measured and analyzed to assess the stability status of the 
system in near future. Methods which estimate critical clearing 
time (CCT), energy function [9], sensitivity analysis [10,11], 
and Equal Area Criterion (EAC) [12,13] are included in this 
category. The main drawback of these methods is that they 

cannot predict the stability status and hence, they may not 
provide sufficient time for system operators to take timely 
suitable control measures, e.g. fast-valve control of turbines, 
system switching, load shedding, dynamic braking, and 
intentional islanding [14,15]. 

Prediction methods which are used to predict the stability 
status are more effective in analyzing transient stability. Hence, 
in the last decade, extensive research works have been 
conducted to formulate efficient algorithms for rotor angle 
stability prediction [16-18]. Especially, the advent of a Wide 
Area Measurement System (WAMS), which measures time-
synchronized values of system variables and makes the 
dynamic behavior of power system observable, significantly 
improves the performance of the artificial intelligence-based 
methods (like SVM and decision tree) in accurately predicting 
power systems stability status [19,20]. 

In [19], a transient stability prediction method is proposed 
based on the decision tree algorithm, in which, transient 
stability is investigated only for three-phase short-circuit faults 
on transmission lines using post-fault information. Also, in 
[20], SVM algorithm is used to predict transient stability using 
both post-fault and pre-fault data just for three-phase faults. In 
[17], after measuring voltage phasors of some buses and 
generators rotor angles via PMUs, transient stability status 
prediction is accomplished with a decision tree based algorithm 
for three-phase short circuit faults on some HV lines with 
precision of 93%.  

When a power system is affected by a disturbance, transient 
instability is mainly determined by a progressive separation of 
rotor angles of some SGs from others. As illustrated in Fig. 1, it 
can be concluded that as time passes and the rotor angle 
separation increases, prediction of angle stability status of 
power system becomes easier. Hence, according to the 
extensive investigation of authors, all methods proposed in the 
literature used data measured before and after fault clearing 
time to accurately predict stability status. However, since the 
required remedial actions should be executed before the 
operating point leaves the region of attraction [21,22], such a 
prediction methods reduce the time available to perform 
remedial actions. In other words, if transient stability is 
predicted using only data measured before fault clearance, 
more opportunity will be available to conduct suitable control 
measures. In addition, the methods proposed in the literature 

Fast Prediction of Angle Stability Using Support 
Vector Machine and Fault Duration Data

2019 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS 2019), 29 June 2019, Selangor, Malaysia

978-1-7281-0784-4/19/$31.00 ©2019 IEEE 258

Authorized licensed use limited to: UNIVERSITY TENAGA NASIONAL. Downloaded on July 06,2020 at 08:49:44 UTC from IEEE Xplore.  Restrictions apply. 



usually predict the stability against a limited fault types, e.g. 
against only LLL [20]. 

Figure 1. Instability occurrence in IEEE 14-Bus test system. 

Fault occurrence Fault clearance

Pre-fault Fault duration Post-fault

time

Figure 2. The pre-fault, fault duration and post-fault period. 

In order to provide a single comprehensive assessment tool 
to predict stability status against different fault types (i.e. LLL, 
LL, LLG, LG) as well as to give more opportunity to system 
operators to take suitable control measures, this paper proposes 
an SVM-based algorithm to predict the transient stability using 
only pre-fault and fault duration data (specified in Fig. 2), i.e. 
with no need to data measured after fault clearance. Such a 
prediction tool can be used by special protection systems or 
power management systems [23] to prevent instability.  

It is worth mentioning that that due to the large size of 
power systems, the use of advanced measuring system has 
become a necessity for monitoring, maintaining the security 
and the stability, and enhancing network reliability. Traditional 
power system measuring tool, namely SCADA, is not suitable 
for fast dynamic analyzes due to the inability to measure time-
synchronized values of system variables and also, the inability 
to measure voltage and current phasors.  With the advent of the 
WAMS, power system control and monitoring has improved 
significantly. At the lowest level of this measuring system, 
Phasor Measurement Units (PMUs) are located to measure 
voltage and current phasors, frequency and other parameters at 
specific time instances and send them to a higher stage called 
Phasor Data Concentrator (PDC). In the second step, PDC 
receives measurements with a precise time tag from PMUs 
located on its territory through communication links and 
prepares synchronous phasors and eliminates false data. 
Finally, Super Data Concentrator is at the highest level which 
receives data from all PDCs and proper control actions may be 
taken at this level [24,25]. In this paper, to gather such time-
synchronized data, dynamic simulations have been carried out 
in DIgSILENT PowerFactory software in which controllers of 
SGs as well as voltage-dependent loads are accurately modeled 
to properly simulate the dynamic behavior of test system. 
Then, the values of currents and voltages generated by SGs are 
gathered.  

The remainder of this article is organized as follows. In 
Section 2, the SVM classifier needed to carry out this research 
has been addressed. The complete implementation of the 

proposed method is explained in Section 3. In Section 4, the 
simulation results are investigated and finally, the conclusion is 
presented in Section 5. 

II. SUPPORT VECTOR MACHINE

The SVM classifier is one of the most effective tools for 

solving the problems of classification, estimation, and 

regression [16,20]. For this purpose, offline data which is 

usually obtained from simulation results are used to determine 

a proper feature set which can properly indicate the operating 

point condition. Then, the value of this feature set for all 

feasible operating points are calculated and applied to SVM 

(or any other classifier) to train it. In online application, based 

on the data gathered from online operation of network, this 

trained classifier is used to classify the system stability into 

different classes (e.g. stable or unstable) with the least error 

[26].  

In SVM, the input data is mapped into a higher 

dimensional feature space by a kernel function, e.g. Radial 

Basis Function (RBF). Then, in the higher dimensional space, 

the SVM classifier separates two classes (i.e. C1 and C2) by 

constructing an optimal hyper-plane, h(x): 

( ) 0

T t
h x x=  +  (1) 

Given a set of training data an SVM seeks to construct a 

hyper plane (i.e. ω, ω0) that separates the data with the 

maximum margin of separability. In Fig. 3, a schematic 

diagram of high dimensional feature space is illustrated where 

a sample xt, which belongs to C1 or C2 classes and identified 

by rt =+1 or -1 respectively, is mapped into the higher 

dimensional space so that [27]:  

0
1

T t
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0
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Furthermore, the distance between sample and hyper-plane 

is determined as follows: 

0

T t
x

r
 +

=


(3) 

To calculate the optimal hyper-plane, the following 

constrained optimization formula is used to maximize the 

distance of the nearest samples to h(x), i.e. support vectors to 

hyper-plane, which are shown by h(x) =±1 [28]: 

21
min

2
     subject to  ( )0

1
t T t

r x +  +  (4) 

For this purpose, the Lagrangian multiplication can be 

written as follows: 
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1
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  (5) 
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Figure 3. Schematic diagram of high dimensional feature space [29]. 

To solve )5(, a transfer function, φ(x), is taken into account to 

deal with a dual problem as follows [28]: 

( )
1

2
max : t s t s t s t

t s t

r r K x x  + −  

subject to 0
t t

t

r =   and  0
t

 
(6) 

where K(xt xs) is known as a kernel function and is defined as 

follows: 

( ) ( ) ( )
T

t s t s
K x x x x=   (7) 

Finally, the solution for the optimization problem is: 

( )( ) tt t

t

K x xh x r=  (8) 

and sample x can be classified arbitrarily by (8) and (2). as 

mentioned earlier, in online application, the feature set is 

applied to this trained SVM to predict the transient stability 

status of power system.  

III. PROPOSED METHOD

In this paper, a novel SVM-based algorithm has been 
proposed which only uses data measured before fault clearance 
for timely and accurate prediction of angle stability status. The 
procedure to training the SVM has four steps which are 
described below. 

A. Operating Points Determination 

To obtain all feasible operating points, starting from an 
operating point at low loading condition, system loading 
increases successively with variable steps using time-domain 
simulation. After each step-load change, when the system 
reaches to a steady state condition, the equilibrium point is 
considered as a new operating point and the above procedure 
repeated until instability occurs. It should be noted that in these 
simulations, as the operating point gets closer to the stability 
boundary, the load increasing step becomes smaller and hence, 
in heavily loaded conditions, the density of operating points is 
high.  

B. Contingency Determination 

This paper attempts to prepare a tool for prediction of 
transient stability status against different fault types at all buses 
using pre-fault and fault duration data. Table I shows the 

contingencies considered in this paper, which takes into 
account all possible faults to train the SVM classifier, to ensure 
it covers all scenarios. 

TABLE I. Fault types and fault location in IEEE 14-bus test system used to 
train a SVM classifier. 

Fault Type Fault Location 

3 phase short circuit 

at 5% and 95% of all transmission 
lines  

2 phase to ground short circuit 

2 phase short circuit 

single phase short circuit 

It should be noted that after determining various operating 
points and contingencies, time domain simulations are 
performed offline for all possible scenarios. Therefore, the 
number of study cases is: 

2op line FaultType
StudyCases N N N=   (9) 

where Nop is the number of operating points obtained in 

Section III.A, Nline is the number of transmission line, and 

NFaultType is the number of fault type (=4) mentioned in Table I. 

Also, it is worth mentioning that for each dynamic 
simulation in which a disturbance occurs at an operating point, 
the stability status of system is determined based on (10): 

max

max

360

360
TSI

− 
=

+ 
(10) 

where Δδmax is the maximum angular separation between any 
two generators rotor angles during the transient period. If TSI 
remains positive, the system will be stable and its class label is 
tagged as 1. Otherwise, the system will be unstable and its class 
label is tagged as 0.  

C. Sampling 

According to [30], PMUs in 50 Hz systems can perform 25 
sampling per second, and 30 samples per second for 60 Hz 
systems. Therefore, in this paper, it is assumed that the PMUs, 
installed at generator buses, captures the time-synchronized 
values every 1/30s which is mentioned in Table II.  

TABLE II. The PMUs sampling times in fault duration period. 

Sample number 
measured in fault 
duration period 

1 2 3 4 

Sampling time 1 s 1.033 s 1.066 s 1.099 s 

It is noteworthy that in this paper, assuming that all 
transmission lines are protected using Direct Under-reaching 
Transfer Trip (DUTT) scheme. The operating time of Zone 1 
of distance relays is set to 100ms, when a short circuit occurs at 
1s, it remains for 0.1s and then, the protection system will trip 
the faulted line.  

D. Feature Selection 

Choosing a right feature set is vital to predict transient 
stability when pre-fault and during-fault information is used. 
Since the transient instability is directly related to the angular 
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difference between the generator rotor angles [31,32], in the 
proposed method, variations of generators' active power and  
terminal voltages are used to select an appropriate feature set to 
predict the stability status. In the proposed feature set, two 
types of features are presented to predict the transient stability 
status which are summarized in Table III: 

• Fault-independent features, which have nothing to do 

with the contingency occurs in the system: generators 

terminal voltages and generated active power of SGs. 

• Fault-dependent features: the fault location and fault 

type. 

Among all available parameters that can be used to 

predict transient stability, five features have been selected for 

this purpose and are summarized in Table III. It should be 

noted that for each case (i.e. for each dynamic simulations in 

which a disturbance occurs at an operating point), 1st-3rd 

features are calculated for all generators. 

 
TABLE III. The proposed feature set to predict angle stability status against 

different contingencies.   

Symbol Indicator title Time span 

VG0 
Terminal voltage of 

generators in pre-fault 

Before fault 

occurrence 

1.066 1.033

0.033

t t
G G GdP P P

dt

= =−
=  

Active power change 
of generators in fault 

duration period 

(1.033-1.066) s 

1.033 1

0.033

t t
G G Gdv v v

dt

= =−
=  Voltage amplitude in 

fault duration period 
(1-1.033) s 

Line Faulted Line -------- 

F.T Fault type -------- 

 

In the pre-fault conditions, as the system loading increases, 

the amplitude of generators terminal voltages slightly decrease 

and they drop drastically when the AVR limiters decrease the 

excitation and/or stator currents to pre-specified thresholds. 

Therefore, the voltage amplitude in pre-fault conditions is 

selected as a feature to indicate the closeness of the operating 

point to stability boundary. Also, results of extensive 

simulations carried out by authors show that generally, as the 

stability status of post-disturbance operating point becomes 

worse, the absolute values of the second and third features 

increase. Therefore, it seems that these features are proper 

ones to predict the stability status of post-disturbance 

operating point.  

E. Model training 

For all study cases, the feature set along with their class 
labels (=0,1 for unstable and stable classes, respectively) are 
used to train an SVM classifier using K-fold cross-validation 
method [6]. In this method, while the database is divided into 
K sets, K-1 sets serves as training set to train the classifier and 
the last set is used to test the trained classifier and to determine 
its accuracy. This procedure is repeated K times and each time, 
another set is used for testing and the remaining sets are used to 
train a new classifier. Finally, the average of the accuracy of 
 

 

Figure 4. Single line diagram of IEEE 14-bus test system and PMU locations. 

 the above mentioned K trained classifiers is considered as the 
overall accuracy of a classifier trained with all K sets [33].  

IV. SIMULATION RESULTS 

The proposed method has been tested on IEEE 14 Bus test 
system. By performing offline time domain simulations for 
various disturbances at different operating points, the database 
is collected. These collected data is given as input to the SVM 
to be trained and used in online application to predict stability 
status. As mentioned, in this paper, dynamic simulations are 
performed using DIgSILENT PowerFactory software in which 
all generators' controllers and voltage-dependent loads are 
modeled accurately and the proposed SVM based classifier is 
realized in WEKA software. 

Following the procedure mentioned in Section III, 13 
operating points are generated in IEEE 14-bus test system and 
5 PMUs are installed at generators buses (Fig. 4) to measure 
generators active power generation and bus voltages. For each 
generated operating point, a fault type and a fault location is 
selected from table I and time domain simulation is performed 
to calculate the feature set mentioned in Table III. In these 
simulations, there are 1664 case studies which include 629 
stable and 1035 unstable ones. In Fig. 5, two time-domain 
simulation results for stable and unstable cases have been 
shown, which are related to 3 phase short-circuit fault on 0.1% 
of the line 1-2 in low and heavy loading conditions, 
respectively. It should be stated that in this database, the 
number of different fault types (LLL, LL, LLG, and LG) is 
416.  

Finally, the accuracy of the feature set that was used to train 
an SVM classifier is given in Table IV. As shown in this table, 
among different kernel functions, the best prediction is 
achieved when the polynomial kernel function is used with 10-
fold cross validation. In this case, although the proposed SVM-
based classifier does not use any post-fault measured data, it 
can predict the stability against different types of short-circuit 
types with the accuracy of 99.38 %.  
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(a) 

 

 
(b) 

Figure 5. Three-phase short circuits contingency in low loading condition 

leads to a stable equilibrium point b) Three-phase fault in high loading 

condition results in instability. 

 
TABLE IV. The accuracy of the trained classifier against different SVM 

kernel functions.  

Kernel 
Function 

classes No. each label accuracy 

RBF 
stable 629 

99.34 % 
unstable 1035 

Linear 
stable 629 

99.34 % 
unstable 1035 

Polynomial 
stable 629 

99.38 % 
unstable 1035 

 

V. CONCLUSION 

In this paper, a precise and fast algorithm has been 
proposed to predict the transient stability status of a power 
system without any post-fault measured data. In this method, 
assuming that PMUs have been installed only at generators 
terminal buses, time-synchronized values of active power 
generation and terminal voltage of SGs are used to calculate 
the proposed feature set. Then, this feature set is used to train 
an SVM classifier. The results of simulations performed in 

IEEE 14-bus test system show that the suggested method is 
robust under the presence of different faults types and network 
topology changes and can predict the stability status of test 
system against different fault types (i.e. LLL, LL, LLG, LG) 
with accuracy of 99.38%.  
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