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Abstract—The increasing interaction of modern industrial 
control systems (ICS) to the outside Internet world influences 
making these systems vulnerable to a wide range of cyber-
attacks. Moreover, the utilisation of Commercial-off-the-Shelf 
(COTS) products, as well as open communication protocols, 
made them attractive targets to various threat agents including 
cyber-criminals, national-state, and cyber-terrorists. Given 
that, today’s ICSs are deriving the most critical national 
infrastructures. Therefore, this raises tremendous needs to 
secure these systems against cyber-attacks. Intrusion detection 
technology has been considered as one of the most essential 
security precautions for ICS networks. It can effectively detect 
potential cyber-attacks and malicious activities and prevent 
catastrophic consequences. This paper puts forward a new 
method to detect malicious activities at the ICS net-works.   

Keywords—Intrusion Detection System; SCADA; Deception 
Attack; Machine Learning; Industrial Control Systems.

I. INTRODUCTION

At the advent of industrial control systems (ICS), their 
security was assumed to be at top-notch for it is physically and 
electronically isolated from other network systems. 
Nonetheless, the occurrence of the Stuxnet attack upon both 
cyber and physical dimensions shows that the measures of ICS 
security and protection mechanisms have to be improvised 
[1]. Moreover, that the security by obscurity concept is no 
longer a valid approach for such systems [2]. Since the past 
few years, several incidences of security breaches on highly 
sensitive facilities besides the Stuxnet incident on the Iranian 
nuclear plant. 

For example, cyber-attack induced power outage in 
Ukraine in 2015 [3], had been executed to through 
compromising the corporate networks via spear-phishing
emails with BlackEnergy malware, attack on German steel 
plant in late 2014 where the production control software was 
hacked [4], thus causing severe material damages on its 
related site. Such unfortunate incidences have raised concerns 
among cyber-security researchers. Thus, many cyber-security 
agencies, providers, and researches have taken substantial 
initiatives to address the vulnerabilities and loopholes of the 
ICS systems to protect these systems from security threats, 
attacks, and malware. Nevertheless, activities that aid in 
detecting security vulnerabilities and potential breaches were 
not able to identify zero-day vulnerabilities or unforeseen 
threats [5]. Therefore, an intrusion detection system is 
required to strengthen the security of the ICS network and 
present malicious attacks by targeting the system.  

Intrusion detection systems (IDS) were introduced in 
conventional IT networks; they were designed for the 
automatic and systematic detection of known cyber-attacks 

and unusual malicious activities [6]. They collect and analyse 
network traffic, security logs, audit data, and information from 
key points of a computer or network systems, to verify the 
legitimacy of the examined activity and check against the 
security policy whether there exist security violations. 
Recently, IDS were involved in maintaining the security of 
ICS networks. During the last few years, intrusion detection 
technology for ICS has become a research hotspot [2], which 
has drawn great attention from both academia and industry.
The main goal of this article is to identify the limitations of 
existing ICS-IDS systems and put forward a proposed method 
to detect malicious activities on the anomaly bases. The 
remaining of this paper is organised as follows: Section 2 
presents an overview of industrial control systems, while 
Section 3 presents the proposed method while section 4 
presents the conclusion.

II. INDUSTRIAL CONTROL SYSTEMS

Industrial Control Systems (ICS) are used for monitoring 
and controlling numerous national critical infrastructure 
systems such as in electrical power generation and 
transmission, train control, chemical plants as well as in oil 
and water treatment and distribution systems [7]. In particular, 
they are deriving, monitoring, and controlling the most 
significant and critical systems in our daily lives. Therefore, 
ICS has a strategic significance due to the potentially serious 
consequences of a fault or malfunction. 

As a consequence, protecting these systems against 
malicious attacks is a vital requirement to prevent catastrophic 
consequences. ICS typically incorporate sensors and actuators 
that are controlled by Programmable Logic Controllers 
(PLCs), Remote Terminal Units (RTU) or Intelligent 
Electrical Devices (IEDs) on the field sites which are 
themselves managed by the Human Machine Interface (HMI) 
at the control centre side. The architecture of a typical 
industrial control system can be envisaged as three main areas, 
as illustrated in (Fig. 1)[8].  

At the field devices area; sensors, relays, and actuators 
offer an interface to both control and monitor the physical 
processes. As such, the RTU and the PLC are incorporated as 
they aggregate control (serve as master) for many field devices 
by passing commands and responses via a communications 
network to the control centre. The control centre commonly 
consists of ICS application servers to process monitoring and 
control, database servers for historical record storage, and in 
some cases, interoperability servers to interconnect the ICS 
control software and hardware from varied vendors. 
Moreover, the operator of the system monitors the state of 
physical systems’ processes through the HMI and controls the 
process by activating commands as required.
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Figure 1. General architecture of an ICS system

Generally, the ICS network could have multiple 
supervisory systems, PLCs, RTUs, HMIs, processes and 
control instrumentation, as well as sensors and actuator 
devices that cover a large geographical area, where all are 
interconnected via a communications network [9]. The 
communication network is intended to provide the means by 
which data can be transferred between the main control 
centre and field sites. 

Historically, ICS networks have been isolated from 
other networks through the use of dedicated communication 
links and proprietary communication protocols [8]. Yet, 
with the increased deployment of geographically distributed 
substations and economical consideration, the ICS system 
has become increasingly interconnected, rapidly adapt
Internet-enabled devices, as well as open communication 
standards, so as to minimise the costs incurred, as well as to 
improve methods of integration and maintenance [10]–[12]. 

In making better decisions and providing real-time 
updates, utility companies have integrated their ICS 
networks with their enterprise networks (business and 
corporate networks) to streamline operations [13]. Hence, 
the industrial control system is faced with vulnerabilities 
and threats associated with cyber and physical devices, 
software, as well as communication and control protocols. 
Thus, protecting the industrial control systems is of vital 
importance. 

Originally, ICS were designed for serial 
communications and were implemented on a physically 
secured premise that all the operating entities would be 
legitimate, properly installed, perform the intended logic 
and follow the designated protocol [14]. However, due to 
the current technology in use and the necessity of 
connecting control networks to the Internet, many ICSs have 
become vulnerable from the security perspective as they 
almost have no measures for defending against a wide range 
of cyber-attacks [10]. 

Specifically, ICS remote site devices do not verify the 
identity and permissions of other devices which they 
interact with due to the lack of authentication and 
authorisation mechanisms [13]. Moreover, they do not 
verify the incoming message contents and its legitimacy due 
to the absence of integrity check; additionally, the data are 
being exchanged in plaintext where no encryption methods 
are used to preserve confidentiality. Therefore, ICS 
networks are vulnerable to wide range cyber-attacks, and in 
particular to deception attacks [15].  

In this work, our focus is on a special type of attacks 
called deception attacks, which are defined as false 
information sent by an adversary from sensors or controllers 
[16]. The false information may include wrong sender ID, 
wrong measurement or device status. Traditionally, this type 
of attack can be easily detected if the ICS protection system 
is configured to check with the expected output of a healthy 
system and detect whether it is being attacked or not. 
However, this technique can only work for a basic deception 
attack and fail to detect a more sophisticated type of attacks 
(i.e. stealthy deception attacks) [17]. Thus, in such cases, the 
ICS would not be able to protect itself against such attacks. 
Anomaly-based. IDS is considered as one of the outstanding 
solutions to this matter as they can be set to monitor the 
behaviour of the communication pattern in the designated 
system.  

III. ANOMALY-BASED IDS FOR DECEPTION
ATTACK

This work presents a new anomaly detection method for 
detecting and preventing stealthy deception attacks in 
industrial control systems. The proposed method would be 
able to classify events generated by an RTU, PLC or IED 
into either legitimate or malicious behaviours. Preliminary 
analysis showed that the proposed method would be able to 
classify alarms in high accuracy with low false alarms. The 
detection method presented in this work is based on 
investigating the behaviour of normal, attack-free activities 
to learn how future events can be handled more efficiently.

The main objective of this method is to filter the 
incoming messages and investigate the validity of being 
false or legitimate based on features extracted from the 
network traffic flow corresponding to the events generated 
by the remote sites. To perform this task, the proposed 
method has to pre-process the monitored network traffic to
extract the required features. Once an event has been 
generated, the corresponding network traffic flow features 
are examined to evaluate the truthiness of the generated 
event. Prior the classification method to be able to 
distinguish fake events, it has to be trained with a set of 
legitimate events to identify normal communication patterns 
that tend to cause changes of remote sites’ status or readings.  

IV. NETWORK TRAFFIC FEATURES

Feature selection is an important step in building 
intrusion detection and constructing alarm classification 
modules. During feature selection phase, a set of network 
traffic features deemed to be the most effective attributes is 

268

Authorized licensed use limited to: UNIVERSITY TENAGA NASIONAL. Downloaded on July 06,2020 at 07:05:41 UTC from IEEE Xplore.  Restrictions apply. 



extracted in order to construct suitable classification 
module. In previous work the authors have identified a set 
of key features that have the potential to identify possible 
anomaly behaviours [19]. From the selected network traffic 
features a set of attributes have been derived. The calculated 
attributes have been designed to reflect the communication 
pattern of the network during the observation time period 
and support for establishing a communication profile for 
each network node. 

The first metric is suggested to examine the amount of 
data send or received by a network node and to ensure that 
this parameter is generally short term stable. Recent 
researchers have showed that, sudden changes in the pattern 
of data transfer may indicate attack activities. In this 
context, to examine the rate of data transferred, the ratio of 
the data sent or received by a network node to the total 
amount of data traverse in the network during the observed 
time period have been considered. The ratio is estimated 
using the formula given in equation 1.ܸ݁݉ݑ݈݋ூ௉:௉௢௥௧(ݐ) = ∑ ∑(ݐ)ூ௉:௉௢௥௧ݏ݁ݐݕܤ (ݐ)ݏ݁ݐݕܤ (1)

However, monitoring the probability of a random 
variable like the amount of network data does not provide a 
concrete clue on sudden changes neither represent system 
state. Therefore, it was suggested to monitor the partial joint 
entropy of this value which can be estimated using the 
following equationH(Volume୍୔:୔୭୰୲)୲= number of bytes୍୔:୔୭୰୲(t)∑ number of bytes logଶ number of bytes୍୔:୔୭୰୲(t)∑ number of bytes  (2)
Moreover, to make an implication on how significant the 
change in communication pattern was, the time rate of 
change of partial joint volume entropy have been monitored. 
In this context, anomalies showing unusual traffic volumes 
will also show unusual entropy values. Monitoring entropy 
changes over time can reveal anomalous activities those 
having trivial effect on communication patterns. The time 
rate of change of partial joint volume entropy can be defined 
as follow:∆ୌ(୚୭୪୳୫ୣ౅ౌ:ౌ౥౨౪)∆୲୧୫ୣ = ୌ(୚୭୪୳୫ୣ౅ౌ:ౌ౥౨౪)౪భିୌ(୚୭୪୳୫ୣ౅ౌ:ౌ౥౨౪)౪బ୲భି ୲బ (3)

The second measure considered is the amount of data 
sent or received with respect to the amount of packets seen 
during the observed time period. To provide an indication 
on the regularity of the network communication pattern, a 
useful metric which was used in our previous work is the 
rate of change of connection size with respect to time gap 
between two interrelated events. The time rate of change of 
connection size is the rate at which the connection size of a 
network feature pair (IP and Port) changes over time and can 
be calculated as follow:∆ୗ୧୸ୣ౅ౌ:ౌ౥౨౪(୲)∆୲୧୫ୣ = ୗ୧୸ୣ౅ౌ:ౌ౥౨౪(୲భ)ି ୗ୧୸ୣ౅ౌ:ౌ౥౨౪(୲బ)୲భି୲బ (4)

        The third metric represents the probability of port 
usage by every host present in the network.

This will be done by examining the conditional 
probability distribution of network port given an IP address, 
in other words, the metric represents how likely a particular 
port will be utilized on particular host. 

,ܲܫ)ܲ (ݐݎ݋ܲ = ∑ ௉௔௖௞௘௧಺ು:ು೚ೝ೟(௧)∑ ௉௔௖௞௘௧௦ು೚ೝ೟(௧) (5)

During an attack, the normal distributions of port usage 
on the victim machine will be affected significantly 
compared to typical distributions under normal traffic. 
Therefore, in this work, the conditional probability of 
network interface will be considered. It is simply a measure 
of how likely it is that a particular port will be utilized on a 
particular host; a number expressing the ratio of port usage 
to the whole number of cases occurred. The conditional 
probability of port-access can be expressed as:P(Port|IP) = ୔(୍୔,୔୭୰୲)୔(୔୭୰୲) (6)

V. CONSTRUCTING THE BASELINE MODEL

During a training phase, the proposed method has been 
designed to learn and model network communication states 
that cause the remote sites to trigger an event during benign 
activities using network traffic flow features identified in 
[18]. Off the training phase, the event classification method 
utilises the constructed model to classify unlabelled events 
into either false or legitimate. The classification method 
classifies an event based on the distance between the 
training samples and the examined event, where those are 
located close to the training samples are considered false 
events. 

The proposed events classification method is composed 
of three processes; initially, the network traffic flows are 
pre-processed to extract the required features. The network 
traffic flows are divided into uniquely time distant subsets; 
for each subset, flows are grouped based on the 
corresponding IP address and port numbers to estimate the 
required features. After processing the training examples, 
the second process is initiated, in which a communication 
profile for each network interface is established. The 
communication profile is considered as the baseline model 
that is used in the event classification process (the third 
process). Once the baseline model is established, the method 
can classify new unlabelled alarms. The following 
subsections detail the proposed event classification method 
processes.

A. Network Traffic Profiling
A literature review has suggested that wide range of 

traffic anomalies cause changes in the distribution of IP 
addresses and ports observed in the network traffic. As well 
as, it has shown that, network traffic flow can represent the 
state of the network in high precision. In this process, the 
network traffic flows are divided into uniquely time 
distanced segments; a dedicated module is responsible for 
estimating the network traffic flow features for each flow 
segment identified. 

It accumulates flows generated from the same network 
interface concerning the direction of the traffic flow. The 
module estimates the values of the three network traffic flow 
features identified in [18]. The network traffic features 
include; time rate of change of partial joint volume entropy, 
the time rate of change of connection size and the 
conditional probability of port accessed. For each network 
interface involved in the flow segment, its state shall be 
estimated based on the defined network traffic flow features. 
The identified features will be referred to as symptom 
vectors.
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B. Model Construction Process
Before a classifier can classify new instances it needs to 

learn a classification model from a set of labelled data 
examples, then it would be able to classify the new instances 
into one of the defined classes. In this work, the proposed 
event classification algorithm operates in a similar two-
phase fashion. However, it establishes a model of one class 
and anything that does not fit to that class will be considered 
as an anomaly. 

The proposed event classification algorithm, during the 
training phase, constructs a communication profile for each 
network interface observed in a given time slot. The 
communication profile composed of a set of symptom 
vectors that represent the communication behaviours of the 
examined network interface which made the RTU or PLC 
produce the event. 

In this work, the network traffic flows have been 
aggregated every two seconds to allow more information 
about the state of the network interface to be observed. 
During the training phase, the system is processing clean 
data that does not contain malicious attacks. Therefore, any 
event generated in this phase shall be considered as a true 
legitimate event, and the estimated network behaviour 
features represent conditions that cause the remote site to 
report the event. The classification method in this work 
considers these situations to construct a model for a 
communication profile for each network interface. 

The acquired features were formed into a vector of seven 
attributes; the attributes are; a timestamp, IP address, port 
number, traffic direction, the time rate of change of partial 
joint volume entropy, the time rate of change of connection 
size, the conditional probability of port accessed. The 
vectors were stored in distinct files each represents a 
specific network interface. This process continues until the 
training phase is over. Afterwards, the model construction 
process is triggered to generate the specified clusters. 
Simple K-means algorithm has been used to perform this 
task. It generates three clusters that represent network states 
which cause an RTU or PLC to generate events.

C. Alarm Classification Process
To detect abnormal patterns from newly generated 

events, new data points are created for the reported event. 
The new points’ distances from the baseline communication 
profile clusters indicate their deviances from the normal 
pattern such as the points with large distances are more 
probability identified activity to be false activities. The 
generated event would be considered as normal if it satisfies 
any one of the following cases: it fits in one of the three 
clusters, or at least two of its features are within the range of 
a defined cluster, and the convergence to the third feature is 
less than a threshold value. 

To assure the defined cases, a new classification 
approach has been proposed to determine the best fit cluster 
of the normal activities profile clusters that a test point fits 
in. Therefore, the proposed classifier is named as Simple 
Best Fit Cluster (SBFC). The proposed SBFC classification 
algorithm exercise the three network features on deciding on 
test points labelling. To examine the first case the proposed 
classifier would compute the Euclidean distances between 
the centroids of baseline communication profile clusters and 
the test point d(P, C୧). The Euclidean distances have been 
selected as it has also been used in the clustering algorithm. 

Consider P is a test point having coordination ൫p୶, p୷, p୸൯ in the false alarm profile and C is a cluster 
centroid having the coordination (cx,cy,cz) estimated during 
the training phase. Therefore, the Euclidean distance can be 
estimated by:d(P, C) =  ට(p୶ − c୶)ଶ + ൫p୷ − c୷൯ଶ + (p୸ − c୸)ଶ      (7)                  

A test point is considered as normal (benign activity) if 
the Euclidean distance to a baseline communication profile 
clusters is within one standard deviation of the mean of any 
of the three clusters. It is considered as normal as it falls in 
one of the baseline communication profile clusters and 
shares similar features as the normal traffic.  

In the case of a test point does not fit in one of the 
baseline communication clusters, the classification method 
shall determine the possibility of the test point is located 
within the range of two attributes of the baseline 
communication model and slightly diverted from the last 
attribute. To investigate this scenario, the process will be 
performed in stages. In the first stage, the proposed classifier 
would determine the Euclidean distances between the test 
point and the centre of each of the three clusters to find 
which cluster the test point is close to. In this stage, the 
cluster with the smallest amount of Euclidean distance will 
be defined as the dominant cluster. The dominant cluster 
will be considered to find whether the test point can be 
considered to be an element of that cluster. In the second 
stage, the proposed method computes the Euclidean 
distances between each of the three test point’s features and 
the centroid of the exact feature of the dominant cluster. 
This measure will be defined as “similarity gap” and can be 
represented as follows:g(p୶,c୶) = ඥ(p୶ − c୶)ଶ, g(p୷,c୷) = ඥ(p୷ − c୷)ଶ, g(p୸,c୸) =ඥ(p୸ − c୸)ଶ                                       (8)

The similarity gap provides evidence of which feature of 
the test point located outside the dominant cluster and how 
far this feature is. Hence, the system will consider the test 
point’s feature which shows a similarity gap beyond the 
range of mean ±  abs(δ) of the dominant cluster. 
Subsequently, the system determines the test point’s 
convergence ( ), which is the test point that has a similarity 
gap beyond the defined distance. conv൫p୧,c൯ =  g൫p୧,c୧൯ (9)                                            

At the end, test points with convergence within a range 
of defined threshold value will be considered as normal 
(benign activity). The threshold value is distinct for each 
attribute in every cluster of a network interface and its value 
is equal to  c୧ +  abs(δ୧) where i refers to the attribute that 
the testing point is located outside its range. Experiments 
have shown that, test points with convergence larger than  c୧ + abs(δ୧) but less than c୧ + 2 ∗ abs(δ୧) can be 
considered as false alarms. Such as; c୧ + 2 ∗ abs(δ୧) > ൫p୧,c൯ݒ݊݋ܿ > c୧ +  abs(δ୧) (10)                  

VI. =PROOF OF CONCEPT

Before a classifier is able to classify new instances it 
needs to learn a classification model from a set of labelled 
data examples then it would be able to classify the new 
instances into one of the defined classes. In this work, the 
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proposed alarm classification algorithm operates in a similar 
two-phase fashion. However, it establishes a model of one 
class and anything that does not fit to that class will be 
considered as an anomaly.

During the training phase, the proposed alarm 
classification algorithm constructs a communication profile 
for each network interface observed in a given time slot. The 
communication profile composed of set of symptom vectors 
that represent the communication behaviours of the 
examined network interface which made the IDS to produce 
false alarms. Table 1 illustrates an example of the network 
traffic profiling features, where each row represents a 
symptom vector; collectively forms a communication 
profile of a network interface. 

The presented example of the communication profile is 
constructed based on analysing alarms generated by a 
network host has an IP address of 172.16.112.50 receiving 
data on port number 21. The communication profile has 
been constructed using network traffic collected from 
DARPA/LL training dataset. During the training phase, the 
examined alarms were generated by an anomaly-based IDS 
while executing attack-free data. Therefore, the symptoms’ 
vectors represent network behaviours that tend to trigger an 
alarm.

Table 1. An example of network profiling features for 
network interface 172.16.112.50:21

Timestamp ∆H(Volume୍୔:୔୭୰୲)∆time ∆Size୍୔:୔୭୰୲(t)∆time P(Port|IP)
921523780 -0.00044 -0.24686 1

921523964 0.00013 0.14221 1

921524238 0.00025 -0.12774 1

921525240 0.00005 0.02987 1

921525322 0.00096 0.02012 1

921525486 -0.00163 -0.0686 1

921525550 0.00374 0.17578 1

921525904 -0.00063 -0.08922 1

921599628 0.00001 0.00032 1

921599894 0.00026 0.02497 1

921600262 0 0.00306 1

921602978 -0.00008 -0.00113 1

921603116 -0.00087 -0.13949 1

921603184 0.00136 -0.1299 1

921605196 0.00011 0.01204 1

921605314 -0.00395 -0.20537 1

921611830 0.00001 0.00373 1

921611946 0.00316 0.09195 1

921612110 -0.00285 -0.08943 1

Figure 2 illustrates the communication behaviour of the 
network node demonstrated in Table 1. The figure shows the 
network interface state at every 2 seconds time interval. The 
y-axis signifies the range of values that the three network 
profiling features take while the x-axis is the timestamp.

Figure 2. An example of benign network behaviours

To show more contrasts between the features’ values, 
the “time rate of change of volume entropy” values have 
been scaled by 100, while the rest of features have been 
demonstrated by their actual values. The figure shows that, 
during benign activities, the profiling features make small 
deviations around the average value of each feature. As have 
been mentioned before, small changes in entropy values 
indicate the regularity of the network traffic. Therefore, 
Figure 3 shows trivial changes in the values of volume 
entropy. Additionally, the probability of port accessed has a 
constant value that provides an indication on the normal 
distribution of port usage during the examined time period. 
The main assumption of this work is that, constructing a 
behaviour profile for each network interface and mines for 
deviations may indicate the presence of an attack. 
Therefore, to demonstrate the plausibility of the assumption 
an example of network traffic profiling features collected 
during an attack is analysed and presented, Figure 5
demonstrates an example of communication behaviours 
during portsweep attack targeted the host 172.16.112.50 
through port number 21. As shown in the figure, the changes 
of entropy values shows wide deviations from the average 
value and show a remarkable disruption from the 
communication profile presented in Figure 2.

Figure 3. An example of network behaviours during
attack

The baseline communication profile of each network 
interface has been clustered into three clusters. It have been 
recommended that the number of clusters is based on the 
number of featured to be monitored. That is because of the 
nature of the ideal traffic flow. For example, consider an 
instance of network traffic of IP is ip and Port is port, it 
would construct the following features; partial joint volume 
entropy is 0, the connection size will be 1 and the 
conditional probability of port access will be also 1. 
Representing these features in 3D space would form three 
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clusters. As a result, the communication profile has formed 
three distinct clusters. The resultant clusters were used to 
classify unlabelled alarms as will be explained next 
subsection. Figure 4 shows an example of clustered baseline 
communication profile.

Figure 4. An example baseline communication profile 
Figure. 5 demonstrates demonstrates an example of an 

attack targeting ICS data concentrator 172.16.112.50 
through port number 21. The example considered five 
unlabelled events generated during the testing phase to 
validate their correctness of being true events. The analysis 
showed that out of the five instances only three can be 
considered as true events. This reflected in the 
demonstrated figure, it visualised two instances very close 
to the baseline communication profile’s clusters, while the 
rest are located at a distant.

Figure 5. Example of unlabeled alarms and their locations based 
on the constructed baseline communication profile

If the examined point fits in any of the three normal 
behaviour profile clusters, it would be considered as normal 
and the correspondence alarm will be classified as false 
alarm.

VII. CONCLUSION AND FUTURE WORKS

The industrial control systems are the underlying 
monitor and supervisory system of the most of our national 
critical infrastructures such as electrical power, oil, water 
distribution and management, transportation, and 
telecommunications. Nowadays, the security of these
systems has become prominent. Today’s ICS 
implementations are becoming increasingly interconnected 
with other corporate networks and the Internet; moreover, 
ICS systems have become highly dependent on the use of 
Commercial-Off-The-Shelf (COTS) IT products as well as 
open communication standards to significantly reduce 
infrastructure costs and increase ease of maintenance and 
integration. This brings in substantial challenges in 

protecting critical national infrastructure. Moreover, as the 
cyber-threat landscape continues to evolve, ICS systems and 
their underlying architecture must be secured to withstand 
cyberattacks. The main purpose of this work is to propose a 
new event classification method to manage the events 
generated by remote terminal sites. The proposed method 
helps to filter-out malicious activities to protect the control 
system against stealthy deception attack. 
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