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Abstract

Reference evapotranspiration (ET0) plays a fundamental role in irrigated agriculture. The

objective of this study is to simulate monthly ET0 at a meteorological station in India using a

new method, an improved support vector machine (SVM) based on the cuckoo algorithm

(CA), which is known as SVM-CA. Maximum temperature, minimum temperature, relative

humidity, wind speed and sunshine hours were selected as inputs for the models used in the

simulation. The results of the simulation using SVM-CA were compared with those from

experimental models, genetic programming (GP), model tree (M5T) and the adaptive

neuro-fuzzy inference system (ANFIS). The achieved results demonstrate that the proposed

SVM-CA model is able to simulate ET0 more accurately than the GP, M5T and ANFIS mod-

els. Two major indicators, namely, root mean square error (RMSE) and mean absolute error

(MAE), indicated that the SVM-CA outperformed the other methods with respective reduc-

tions of 5–15% and 5–17% compared with the GP model, 12–21% and 10–22% compared

with the M5T model, and 7–15% and 5–18% compared with the ANFIS model, respectively.

Therefore, the proposed SVM-CA model has high potential for accurate simulation of

monthly ET0 values compared with the other models.

Introduction

Background

Reference evapotranspiration (ET0) is a fundamental variable in irrigation management. Esti-

mation of ET0 is essential to determining the timing, amount, frequency and scheduling of

irrigation [1]. Considering water scarcity and the need to increase food production, knowledge
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of ET0 at different time scales is central to water management [2] and to planning and manage-

ment of water resources [3]. Because the physical processes in the hydrological cycle are com-

plex, statistical models are often applied to model these processes [4]. In addition to regression

and statistical methods [5], artificial intelligence methods have been used in modelling of ET0.

The reasons for use of intelligence methods such as neural networks or fuzzy logic include the

ability to perform quick and easy calculations, deliver high accuracy and handle large volumes

of data [6]. However, artificial intelligence methods can have complex architectures and struc-

tures, which make simulation difficult [7]. Regression techniques and the support vector

machine (SVM) have simpler structures but unknown parameters [8]. The different models

applied in the simulation offer both advantages and disadvantages. The following sections

present the main methods and their potential future uses.

The artificial natural network generates a nonlinear relationship between the driven inputs

and output based on one black box. The model is highly complex, although it has a high ability

to simulate soft computing for different fields such as evaporation [3,9]. One of the complexities

of this method is related to the numerous parameters required for the artificial neural network

(ANN) that should be determined based on numerous sensitivity analyses, trial and error exper-

iments, and number of neurons, and the type of transfer function should be computed based on

accurate computations. The ANN considers multiple layers in the computation, each of which

requires accurate determination of details. Thus, decision makers face many unknown parame-

ters and a complex structure. One important question related to this method is what type of

neural network to use. Various studies have reported different types of neural networks, such as

radial or multi-layer perception [9,10]. For example, Kumar et al. [10] applied various architec-

tures of ANN for simulation of evaporation. The radial neural network yielded the best results

for the simulation of evaporation, and the number of layers and neurons were computed based

on a trial and error process. Additionally, Kisi et al. [9] applied the generalized regression neural

network to simulation of evaporation, and a nonlinear regression theory was added to the ANN

as an estimation function to improve the training level and test level for the algorithm. The

method was based on minimization of squared error, and investigation of the results showed

that the generalized regression neural network could decrease the root-mean-square error

(RMSE) by between 20 and 32% compared with the radial neural network [9]. However, when

the ANN method is compared with metrological methods, the ANN might have better perfor-

mance. Metrological methods such as the application of lysimeters are related to the soil condi-

tion and crop condition. These methods are complex and require expensive tools, and

furthermore, they are advanced for specific aims and cannot be used in all problems [9].

Another method in the simulation field is genetic programming (GP), which consists of eval-

uation programming that can receive input data and generate a nonlinear relationship among

the data to compute the outputs [1,2]. The GP method considers a random search of the deci-

sion space based on a tree structure and uses the tree structure based on the mathematical pre-

sentation of relationships [1,2]. The random set of trees is considered for the first iteration of

simulations, and the best trees are subsequently selected based on the value of the objective

function. The objective function can be considered in terms of an error index such as RMSE.

The selected trees are subsequently modified based on different operators such as mutation and

crossover [1–3]. Thus, accurate determination of the value of mutation and crossover requires

sensitivity of analysis. The decision variables for this method are inserted based on the defini-

tion of an initial population of chromosomes. Therefore, sensitivity analysis is considered for

determination of the initial population of chromosomes to yield the best results for the simula-

tion. One advantage of GP is related to application of the mathematical function and arithmetic

operators such that the method can find an accurate relationship between the input data and

output data. Therefore, the GP has a high mathematical ability to find the best relationship
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between the input and output data, whereas such mathematical operators have not been defined

for other methods in the simulation fields. The importance of this method is high for simulation

of ET0 because ET0 depends on different climatological parameters based on a nonlinear rela-

tionship, and the determination of the best equation between inputs and output is difficult.

One of the other methods used in the simulation of evaporation is related to tree models.

Tree models divide the data into sub-regions and consider the tree application of the data of

each sub-region. The input space was divided into sub-regions, a fit linear model was used in

each sub-region, and the regression tree was built for the data for this level [8,9]. Certain

reports show that this method requires large amounts of sampling input data for simulation of

evaporation, which is one of the potential disadvantages of the method. Although the method

was considered to be straightforward, reports have shown that it can encounter problems with

large numbers of data.

SVM is known as a good tool for evaporation methods. The method has a simple structure,

but the unknown parameter is one of the disadvantages of these methods. Kisi [3] computed

monthly evaporation based on SVM, a tree model and GP. The study showed that the values of

the unknown parameters of this method were obtained based on trial and error, as in many

previous studies. One innovation in the development of this method is related to preparation

of the method with accurate parameter values. Optimization tools can be powerful compared

with trial and error processes such that the unknown values are inserted into the optimization

algorithms, and the accurate values of these parameters are computed based on minimizing

error indices such as RMSE.

In general, soft computing and regression methods have high capability for ET0 simulation,

although each method contains disadvantages as well as advantages. Such methods can pro-

duce better performance than empirical models because empirical models require large

amounts of data and different data, meaning that certain data might not be available for deci-

sion makers, and soft computing and regression methods can simulate the results with less

computational time.

Guven and Kisi [11] used GP, neural networks and empirical models to calculate monthly

ET0 using average temperature, number of sunshine hours and relative humidity as inputs.

The results showed that the neural network model had RMSE values that were lower by 10–

12% relative to the GP model and by 10–20% relative to the empirical models. The applied GP

contains parameters such as mutation and crossover, and the accurate values of these parame-

ters were computed based on the variation of value of the objective function versus the param-

eter values such that the best value of mutation and crossover should minimize the error

indices such as RMSE and MAE.

Cobraner [12] used two different fuzzy methods to calculate the ET0 of a station in the USA

using maximum temperature, sunshine hours, relative humidity and wind speed as inputs.

The correlation coefficient between ET0 simulated using the subtractive clustering-based fuzzy

methods and the observed data was higher than that simulated by the grid partition-based

fuzzy neural network and empirical models. The type of membership function used in this

study was triangular, and the types of functions were computed based on trial errors. Different

types of membership functions were used, and the function that could minimize the objective

function was considered the best function.

Karmialdinit et al. [13] used neural networks, GP, and support vector methods for simulation

of ET0 using sunshine hours, relative humidity and average temperature. The neural network

method reduced the RMSE by 10–15% compared with the support vector and by 8–10% com-

pared with the GP method. A sensitivity analysis was considered for commutation of the random

parameters of GP, the different neural networks were tested on a case study, and the radial basis

was selected because the results of this method matched with the observed data to a high degree.
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Tabari et al. [14] used the neural network, fuzzy neural network and GP to calculate the

monthly ET0, and showed that the fuzzy neural network method had significantly less error

than the neural network and GP.

Samui [15] simulated monthly ET0 using SVM with radial, polynomial and sigmoid kernel

functions and showed that the mean error produced by the radial kernel function was less

than those obtained with the polynomial and sigmoid kernel functions. Additionally, the cor-

relation coefficients of the radial kernel were higher, by approximately 5–7% and 6–9% com-

pared with the polynomial and sigmoid kernels, respectively. The different applied kernel

functions and unknown parameters were computed based on trial and error, and although

trial and error is a standard method, it was not an accurate tool.

Ladlani et al. [16] used the regression neural network, GP, tree model and empirical models

to calculate the monthly ET0 using maximum temperature, minimum temperature, wind

speed and number of sunshine hours. The regression neural network method led to a more

consistent correlation with the observations than the GP and empirical models.

Kisi [17] found that the evolutionary neural network method had lower RMSE values than

the multi-layer neural network and regression for simulating the monthly ET0 in arid and des-

ert regions. Additionally, Kim et al. [18] used an improved neural network and genetic algo-

rithm for simulating the monthly ET0 using temperature, sunshine hours, relative humidity

and wind speed as inputs. The genetic algorithm was used to calculate the number of hidden

layers as well as the weights in the neural network. The results showed that the RMSE for the

improved neural network was 10–12% lower than those of the SVM and regression models.

Citakoglu et al. [19] used the adaptive-network-based fuzzy system (ANFIS) method, multi-

layer neural network and GP to simulate the monthly ET0 at two stations in Turkey under a

moderate climate. The results showed that the ANFIS had lower RMSE, by 10–12% and 13–

15% than the neural network and GP, respectively. Malik and Kumar [20] used an improved

neural network method with the particle swarm algorithm (PSA) and a GP method to calculate

the monthly ET0 for a station in Turkey. The results showed that PSA reduced RMSE by 12–

15% relative to the GP method. Kim et al. [21] used a multi-layer neural network, regression

and GP to calculate the ET0 using the number of sunshine hours, relative humidity, temperature

and wind speed at several stations in Korea. The results showed that the multi-layer neural net-

work method had higher correlation with the observations than regression and GP. Keshtgear

et al. [22] used ANFIS and tree models to calculate the monthly ET0 using a combination of

temperature, sunshine hours, wind speed and relative humidity for a station in Iran. The results

showed that ANFIS had a higher correlation coefficient and lower error than the tree model.

Deo et al. [23] used a spline method, tree model and SVM to simulate monthly ET0 using tem-

perature, sunshine time, and wind speed and found that SVM had lower RMSE values than the

tree and spline models. Mehdizadeh et al. [24] used multivariate adaptive regression spline

(MARS), SVM with a polynomial kernel, SVM with a radial kernel, and gene expression pro-

gramming (GEP) to simulate the ET0. The results showed that the MARS and SVM with a radial

kernel performed better than the SVM with a polynomial kernel and GP methods.

Problem statement and innovation

From the background, it could be summarized that the chronological advancement process for

a prediction model for ET0 is still in progress. Notwithstanding the up-to-date progression in

developing a prediction/estimation model for ET0, achievement of an accurate estimation/pre-

diction model for ET0 is still an essential subject for hydrologists, irrigation managers and agri-

culture experts. During the most recent decades, many efforts have been directed to this

critical point of research. In this context and with respect to our survey, few empirical and
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closed form formulations have been developed to accurately estimate the ET0 value, but these

formulations required several climatological parameters to be available for estimation of the

ET0. The fact that certain of these climatological parameters are unavailable at several locations

in the world has motivated experts to investigate other methods as an alternative to these

empirical methods. Recently, data-driven models and machine learning models such as ANN,

ANFIS and SVM have been introduced, and among these methods, SVM was identified as the

best method for successfully supplying the best accuracy of ET0 values. However, according to

recent studies on implementation of SVM models, the main drawback of this model is the

optimization values for the internal parameters, including ε, C, and σ. These parameters reflect

the same commonality of successions and can be computed via learning experience. Therefore,

this drawback has motivated researchers to integrate the SVM with an advanced optimization

model to optimally estimate these SVM parameters rather than using the traditional trial and

error procedure. However, difficulty still exists in developing such integration due to the clash,

conflict or lack of harmony between the mathematical procedure of the SVM and the optimi-

zation algorithms. Furthermore, those optimization algorithms that are able to be integrated

with SVM still experienced problems such as trapping during search for the global optima and

time consumption for the convergence rate. Therefore, researchers are motivated to use

nature-inspired optimization algorithms to solve these internal parameters of the SVM model.

Based on this information and in line with the logical chronological advancement process

in model development for ET0 prediction/estimation, a novel modelling structure is proposed

that integrates the classical SVM (as predictor) with one of the most recent nature-inspired

optimization algorithm, namely, the cuckoo algorithm (CA). In the current research, the CA

algorithm is used to optimize the internal parameters of the SVM method, with the advantage

of a fully optimized model for effective feature mapping and prediction to overcome the

abovementioned drawbacks in the existing methods.

The current study improves the SVM by optimizing its parameters using a new optimization

algorithm, the cuckoo algorithm (CA), for simulation of the monthly ET0. Many previous studies

have reported on the SVM used in this work based on a trial and error method [25], a method

that has a simple structure and can be a good choice for decision makers. However, it is necessary

to further develop the method. One strategy is to compute the unknown parameter values for the

SVM based on optimization algorithms. The unknown values for the optimization algorithms

were considered as decision variables, and an error index was considered as the objective function.

The values of the parameters should be computed such that the value of the error index or objec-

tive function reaches the lowest value. This process is based on artificial intelligence and iteration

cycles. The important innovation of this paper is related to the development of the SVM method

based on an optimization algorithm. The CA used in this study was selected to develop the SVM

method because when the optimization tool is listed, factors such as rapid speed and ease of com-

putation should be considered for the optimization algorithm, and the method should not become

trapped in the local optimum to solve the optimization problem without an issue. Ming et al.

[26,27] recommended the CA as a powerful method for water resource management problems,

citing the high flexibility of the method with different boundary conditions for hydraulic and

hydrologic problems and its rapid computation and simple structure as important features of the

method. Thus, the SVM method, which is useful for simulation of evaporation, and the CA,

which is a good tool for optimizing the selection of the SVM parameters, were used in this study.

Objective

The main objective of this study is to propose a prediction model that can accurately predict

the ET0. In addition, we introduce a new model structure by integrating the classical predictor,
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which is the SVM in this study, with the cuckoo algorithm (CA), which is considered one of

the most recent nature-inspired optimization algorithms. The proposed model was compared

with the actual ET0 values attained from the experimental models. Furthermore, with respect

to the previous literature review, it has been shown that the GP, ANFIS and M5T models are

useful and successful methods for predicting ET0, and therefore, they are selected for compari-

son with the proposed improved method. To examine the proposed model, the actual ET0 data

and actual climatological parameters for a monitoring station in India are used.

Methodology

Support vector machine (SVM)

The SVM method is one of the most successful and widely used methods in hydrological simu-

lations [24,25]. The linear SVM equation can be expressed as follows:

f ðxÞ ¼ wTrxþ b ð1Þ

where x is the input variable, w are the weight coefficients, b is the bias, Tr is the transposition

and f(x) is the estimated target. SVM attempts to reduce the difference between the observed

and simulated values. Thus, SVM simulates based on minimizing the objective function,

which is an error index. The optimization process is defined as follows [25]:

minimize
1

2
jjwjj2 þ c

Xm

i¼1
ðx
�

i þ x
þ

i Þ ð2Þ

Subject ðtoÞðw xi þ bÞ � yi < εþ xþi

yi � ðwixi þ bÞ � εþ x
�

i Þ ð3Þ

where C is the penalty coefficient, m is the number of training data, x
�

i and x
þ

i are the violations

of the data whose different values are greater than x the permitted range with observable

value), and wi;xi; yi are the weight of the variables, the input variable, and the target observation

variable, respectively. The values of w and b are calculated using Eqs 2 and 3 and are subse-

quently substituted into Eq 1. Different kernel functions are used in the SVM method, and the

radial kernel function is widely used and effective in various hydrological simulations and

water resource management [24,25]. Thus, Eq 1 is considered as follows:

f ðxÞ ¼ wTr:Kðx; xiÞ þ b ð4Þ

Kðx; xiÞ ¼ exp �
x � xi

2g2

� �

ð5Þ

Where K x; xið Þ is the kernel function, and γ is the parameter of the kernel function. The parame-

ters with unknown values for the SVM method (including, C and ε) are entered into the optimi-

zation as decision variables in the algorithm. The purpose of the hybrid SVM and CA is to find

the exact value of the parameters and simulate ET0 via the SVM. The SVM simulates ET0 based

on receiving the input to the problem, and the value of the parameters, C and ε are modified

based on the CA. The SVM is used as a direct tool for ET0 simulation, the CA is subsequently

used as an indirect tool based on a mathematical operator, and artificial intelligence is used to

find the accurate values for the parameters of the SVM to obtain the best results.
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Cuckoo algorithm

The CA is based on the life of the cuckoo bird. The egg laying and growth of the cuckoo is the

main basis of the algorithm. Some birds avoid the trouble of nesting and parental duties by

destroying one egg from a host bird and leaving a cuckoo egg for the host bird to raise. Cuck-

oos accomplished this task by mimicking the colour and pattern of eggs in each nest such that

the cuckoo egg is similar to the actual eggs of the host. Therefore, the cuckoo egg in the nest

has the opportunity to grow and survive. The cuckoos used in this model are of two types:

adult cuckoos and eggs. The pseudo-code of CA includes the following steps [24]:

1. Determine the initial habitat of the cuckoos (the initial response);

2. Assign a few eggs to each cuckoo;

3. Determine the egg laying radius (ELR) for each cuckoo by the number of eggs and the dis-

tance to the destination using the following equation:

ELR ¼ a�
Numberðof Þcurrent ðcuckooÞegg

Totalðof Þeggs
� ðvarhi � varlowÞ ð6Þ

Where varhi is the maximum decision variable, varlow is the minimum value of the decision

variable and a is the number that controls ELR;

4. Cuckoo lays eggs in its respective ELR range;

5. Remove eggs using poor objective function;

6. Determine the value of the objective function for each adult cuckoo;

7. Limit the maximum number of creatures in the environment;

8. Group the cuckoos and determine the superior habitat;

9. Migration of cuckoos to the superior habitat at this stage. In every move towards the target

habitat, the cuckoo does not travel the full distance but only λ % of the path via the φ devia-

tion of the radian. For each cuckoo, λ is a number between zero and one, and φ is a random

number between � o;o. The value of ω is approximately 0.530.

Hybrid of support vector machine and cuckoo algorithm (SVM-CA)

SVM has unknown parameters, and thus the following steps are used to upgrade the method:

1. The g, C, and � parameters are initialized in SVM;

2. The effective inputs for the potential ET0 value are determined based on the correlation

coefficient;

3. Seventy percent of the data are used in training, 15% are used in the validation period and

15% are used in testing;

4. The objective function of the current study is the RMSE;

5. The stop condition for the algorithm is checked. If it is satisfied, go to step 6; otherwise, go

to step 7;

6. The validation and test steps are applied, and the optimal values of SVM method coeffi-

cients are noted;
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7. The values of unknown parameters of the SVM method are entered as the initial population

in CA;

8. Steps 1–9 covered in Section 2.2 are applied to the initial cuckoo’s habitat or the unknown

values of the parameters based on CA. At this point, the process returns to Step 2. Fig 1

shows the stages of the hybrid structure. First, the unknown values of the SVM parameters

are inserted into the algorithm as the initial population. The value of each parameter is allo-

cated to each egg, such as the box. Thus, the SVM method begins with a random value for

the unknown parameters, and the objective function (i.e., the RMSE index as a useful and

known index) is computed. It is natural at the launch of the algorithm for the RMSE to

have a high value such that the other levels of the algorithm attempt to improve the results.

When the objective function is computed, a certain number of eggs (as the value of the

parameters of the SVM method that obtain the highest value for the RMSE) are eliminated

as the worst value for these parameters. The values of the unknown parameters are consid-

ered as decision variables for the algorithms. The solutions that remain after the elimination

of solutions are improved based on the migration operator with the following equation,

which can help to generate the new solutions or new values for the unknown parameters

that can be used in continuation of the algorithm.

POPnewi ¼ POPcurrenti þ bðPOPbest � POPcurrenti Þ ð7Þ

Where POPnewi is the new solution or value of the parameters, POPbest is the best solution, cur-

rent solution and b is the movement coefficient. Eq 6 is applied because the decision maker for

the optimization problem can choose a limited number of eggs to keep the search space from

becoming crowded. The input data for the ET0 simulation are inserted into the SVM, and the

SVM method simulates the ET0 based on a random value of unknown parameters. These

parameter values are determined based on the initial population of the cuckoo and eggs.

Fig 1. Hybrid structure of SVM and CA.

https://doi.org/10.1371/journal.pone.0217499.g001
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M5 model tree (M5Tree)

The decision tree displays a series of rules that lead to a category or quantity. The model is

notably simple and can simulate a large number of attributes and high dimensions. Two main

levels can be observed for the model. The first level is related to division of the search space

into sub-regions, and the second level is related to generation of data using the information of

each sub-region. The new trees are built based on the received input data in the sub-region.

Deciduous trees are formed into a series of separate groups via sequential separation of data

to increase the separation of groups [23]. The structure of a tree model consists of the root, the

inner nodes and the leaf. An inference algorithm or a division criterion is used to produce a

decision tree. The division criterion for the model tree is the standard deviation of the class val-

ues that arrive at each node as quantities of error, and the model calculates the expected reduc-

tion in the error as a result of the test of each attribute at that node. The standard deviation

reduction (SDR) is calculated as follows:

SDR ¼ sdðTÞ �
X jTij
jTj

sdðTiÞ ð8Þ

where T is a series of samples that reach the node, Ti is the samples that are the i-th output,

and sd denotes the standard deviation. After maximizing all possible derivations, the M5 tree

selects an attribute that maximizes the expected reduction. The division further develops the

structure of a large parietal tree, which results in better fitting. To overcome the problem of fit-

ting, the tree must be pruned by replacing a tree with a leaf. Therefore, the second stage in the

design of a tree model involves pruning of the grown tree and replacing the trees with linear

regression functions. This tree modelling technique divides the space of the input parameters

into smaller areas or sub-spaces, and in each of these, a tree regression model is fitted.

Genetic programming (GP)

GP is a method commonly used in hydrological simulation and water resource management,

is based on search and iteration, and includes the following steps [24]. GP is a random heuris-

tic search that acts based on natural evolution and tree structure. The main advantage of this

method is the application of many functions and variables, which results in a high ability for

simulation problems. First, many trees or solutions are considered to randomly generate an

initial population. The nature of the problem affects the selection of the size or the number of

trees. Each tree includes a mathematical, logical equation; numerical and non-numerical vari-

ables; arithmetic operators ð�;�;�Þ; and mathematical functions (e.g., sines and cosines). A

simple mathematical tree and the variables and mathematical operators are shown in Fig 2A

and 2B shows a more complex illustration of the tree, including a number of nodes and

branches. Selected numbers of trees are considered for generation of new trees. The objective

function or error index, such as RMSE, is computed for each tree, and the best trees with the

lowest error index values are selected for generation of new trees for the next levels. Two oper-

ators known as the crossover and mutation operators are applied to the solutions. Sweeping

random sub-trees based on the initial trees are created, and the crossover operator is shown in

Fig 3. The mutation operator is applied in the GP such that the random node or function is

exchanged with a random one. Fig 4 shows the mutation operator. The process continues until

the stop criteria is satisfied.

1. The GP method consists of two sets. The first set is known as the terminal set, e.g., T ¼
x; 1; 2; ; � 1; � 2; . . .½ � The second set is known as the functions set, which can be equivalent

to F ¼ f�;�;þ; � ; exp; sinus; gocinus; log; . . .g. The X in the terminal set is the input
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variable. The method searches the best functions with the best arithmetic operators to gen-

erate a nonlinear relationship between the inputs and output;

2. A set of random initial responses is considered from sets F and T;

3. This step is intended to calculate the objective function for each chromosome and, if neces-

sary, it can apply penalty functions and add them to the value of the objective function;

4. This step is devoted to the application of genetic operators, including mutation and

crossover;

5. The iteration and performance steps continue to the extent that the value of the objective

function reaches a fixed value. The optimal or near optimal value is created as the solution

to the problem. In the current study, arithmetic operators þ; � ;�;�f g and mathematical

functions f
ffiffiffi
x
p

;
ffiffiffi
x3
p

; x2; x3; lnðxÞ; ex; sinðxÞ; cosðxÞ;A rctanðxÞg are used.

Fig 2. Structure of genetic programming (GP).

https://doi.org/10.1371/journal.pone.0217499.g002

Fig 3. Crossover operator for genetic programming (GP).

https://doi.org/10.1371/journal.pone.0217499.g003
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Adaptive neuro-fuzzy inference system (ANFIS) method

Although the neural network has high capability, it still contains certain deficiencies when

used in simulation. Neuro-fuzzy systems are applied in simulation of hydrological variables by

combining the semantic transparency of the rules of systems founded on the learning capacity

of neural networks [21,22]. The combination of neural and fuzzy networks can reduce the

computational time and error rates and is a better match for the problem under consideration.

A fuzzy neural system is presented in Fig 2 in which the circle represents a fixed node, and the

square symbolizes a matching node. Two inputs x and y and an output z are considered for

convenience. The fuzzy systems include several layers for simulation of results. The fuzzy rules

are known as the Sugeno rules or models that attempt to simulate the output results. The deci-

sion maker should attempt to determine the architecture of the method and layers such that

the method uses the different membership functions for generation of a nonlinear relationship

between the input and output data.

The Sugeno model used in this study is one of the most popular models among different

fuzzy systems. Sugeno’s first-order system operates based on the following rules:

Ruleð1Þ ¼ if ðxÞisðA1Þ andðyÞis ðB1Þ; then ðZ1Þ ¼ p1xþ q1yþ r1 ð9Þ

Ruleð2Þ ¼ if ðxÞisðA2ÞandðyÞis ðB2Þ; then ðZ2Þ ¼ p2xþ q2yþ r2 ð10Þ

where A and B are the fuzzy sets and p, q and r are the design parameters that are calculated

during the training period.

Layer 1: The nodes in the first layer generate the membership degrees of an input variable

that belongs to the appropriate fuzzy sets using membership functions. Each node contains

adaptive nodes:

O1

i ¼ mAiðxÞ ð11Þ

O1

i ¼ mBiðyÞ ð12Þ

Where mBi and mAi are the node membership functions. The parameters of this layer are known

as premise parameters.

Layer 2: Layer 2 contains fixed nodes that are represented by the symbol u in Fig 2. The out-

put of each node is the multiplication of all of the input signals to that node:

O2;i¼Wi ¼ mAiðxÞmBiðyÞ ð13Þ

Where Wi is the output for each node.

Fig 4. Mutation operator.

https://doi.org/10.1371/journal.pone.0217499.g004
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Layer 3: The third layer consists of fixed nodes, which are identified by N in Fig 2. The

nodes in this layer are the normalized outputs of Layer 2, which are calculated based on the fol-

lowing equation:

O3;i ¼ wl ¼
wi

w1 þ w2

ð14Þ

Layer 4: Each node in Layer 4 is associated with a node function:

O4;i ¼ wl fi ¼ wlðpixþ qiyþ rÞ ð15Þ

Where wl is the normalized fire power of Layer 3. The parameters p, q and r in this layer are

known as consequent parameters.

Layer 5: Layer 5 consists of a node that calculates the output by summing the input values:

O5i ¼
X

wfl ¼
P
wifiP
wi

ð16Þ

ANFIS uses a hybrid learning algorithm that includes a combination of descending gradi-

ents for calculation of the premise parameters and the least squares method for determining

the consequent parameters. The main task of the algorithm is to learn, set up and accurately

calculate the consequent and premise parameters to prepare ANFIS for simulation (Fig 5).

Empirical models

Direct methods for calculating ET0 use certain parameters that are difficult to calculate. Con-

trary to direct methods, the United Nations Food and Agriculture Organization’s FAO-56PM

method contains equations that are commonly used to calculate the ET0 [22,23,25]. Allen et al.

[28] proposed the FAO-56PM method as a standard methodology used to evaluate other

Fig 5. ANFIS structure.

https://doi.org/10.1371/journal.pone.0217499.g005
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empirical and mathematical models:

ET0� PM ¼
0:408ðRn � GÞ þ g 900

Tþ273

� �
u2ðes � eaÞ

D � gð1þ 0:34u2Þ
ð17Þ

The current study considered the application of three models found to be appropriate in

other studies as empirical models [26,27]. Eq 17 relates to the calculation of the evaporation

method by Priestley-Taylor [29]:

ET0� PT ¼
a

l

D

Dþ l
ðRn � GÞ ð18Þ

Eq 18 relates to the Hargreaves calculation [28]:

ET0� H ¼ 0:0135RsðTmean þ 17:8Þ ð19Þ

Eq 19 relates to the Makkink calculation [30]:

ET0� MH ¼ 0:70
D

Dþ g

Rs
D

ð20Þ

where Rn is the net radiation (MJm-2day-1), G is the soil heat flux density (MJm-2day-1), RS is

the solar radiation (MJm-2day-1), Tmean is the average temperature (centigrade) at a height of

2 m, u2 is the wind speed at 2 m (ms-1), es is the saturation vapour pressure (kPa), ea is the real

vapour pressure, a is a constant coefficient, l is the evaporated heat (MJkg-1) and D is the

vapour pressure curve slope. The wind vane at the station measures the wind direction, and a

cup anemometer is used to measure the wind velocity. The maximum and minimum ther-

mometer are used to record the maximum and minimum temperature, respectively, and the

monthly temperature is considered as the average asthmatic of the mean daily temperature.

The humidity (in unit percent) is measured by a hydrographer. Sunshine is measured using a

sunshine recorder.

Case study

This study deals with a station in Pantangar, India, located at (79038’0”, 2900’0”), as shown in

Fig 6. The station is located in the central Himalayan area of India, and experiences an average

rainfall of 1,400 mm per year. Information collected from a weather center site in the area was

used to simulate monthly ET. This included Tmin;Tmax (maximum and minimum temperature),

RH1, RH2 (relative humidity; the RH1 was recorded at 7 AM and RH2 was recorded at 2 PM),

Sw (wind speed), Hss (sunshine hours) and EPm (monthly ET0). Meteorological tools were con-

sidered to collect data at a meteorological observatory or weather station. There are many

weather stations in India, which are regulated by Indian meteorological department. The

meteorological data were obtained from weather stations in the current study. Previous hydro-

logical studies consider three levels for the investigating of models [1,2]. The first level is

known as training level to prepare the method and obtain the parameters and structure of

method. The second level is related to the validation, and the third level is related to the test

level so that the ability of models are determined based on the application of the model on the

data of this period. The longer period is allocated to the training level as the decision maker

can prepare the method well and then the remaining of periods are used for the verification

and calibration levels [1,2,8].

Fig 7 shows information about the basin data. Information for January 1990 to December

2016 is considered in this study. The period from 1990 to 2008 was used for the training
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period, the period from 2008 to 2012 was used for the validation period, and the period from

2012 to December 2016 (end of period) was used for the test level. The input data are consid-

ered based on mentioned interval times (Fig 7) are inserted into the SVM to start the simula-

tion. The model is prepared based on the training level, and the validation and test level are

then considered for the models to evaluate the ability of the model comprehensively.

The following equation was used to compute the correlation of input parameters with ET0:

rX;Y ¼
covðX;YÞ
sXsY

¼
E½ðX � mXÞðY � mYÞ

sXsY
ð21Þ

where cov is the covariance between the variables X with Y, sX and sY are the standard devia-

tions of variables X and Y, mx and mY are the mean values of variables X and Y, respectively and

E is the expected value. Additionally, the following equations were used to evaluate different

models; the following indices have been reported as suitable indices for the hydrological simu-

lation by different literatures [1–3,10,12,14]:

MAE ¼
1

N

XN

i¼1
jðEToÞi � ðETpÞij ð22Þ

Fig 6. Location of the basin.

https://doi.org/10.1371/journal.pone.0217499.g006
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1
½ðEToÞi � ðETpÞi�

2

r

ð23Þ

NS ¼ 1 �

XN

i¼1
ðEToi � ETpiÞ

2

XN

i¼1
ðEToi � EToiÞ

ð24Þ

where MAE represents the mean absolute error between the simulated and observed data,

RMSE represents the root-mean-square error between the simulated and observed data, NS is

the Nash Sutcliffe coefficient, ETpi is the simulated ET0, EToi is the FAO-56PM ET0 and EToi is

the average FAO-56PM ET0.

Fig 7. Variation of different parameters for the basin.

https://doi.org/10.1371/journal.pone.0217499.g007
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One of the other indices is agreement distance (d); this index varies from 0 to 1, with a high

value showing a better performance of the model.

d ¼ 1 �

XN

i¼1
ðEToi � ETpiÞ

2

XN

i¼1
ðjETpi � ET

�

oij þ jEToi � ET
�

oi jÞ
2

ð25Þ

Table 1 shows the comprehensive information for this station. The temperatures have sig-

nificant values for the station that lead to high values of ET. Additionally, the CV value for the

RH1 has a significant value.

Results and discussion

Examination of input combinations

Table 2 shows the relationship between different inputs and ET0 values. The highest correla-

tion was observed with the maximum temperature followed by the minimum temperature.

The lowest correlation was observed with RH2. Furthermore, the relative humidity had an

inverse relationship with ET0, and the wind speed had a greater effect on ET0 than the sun-

shine hours.

Thus, using Table 2 and the correlation values, the following inputs were found for different

models:

1 � GP1;M 5T1; SVR � CAÞ ! Tmin;Tmax;RH1;RH2; Sw;Hss

2 � GP2;M 5T2; SVR � CA2Þ ! Tmin;Tmax;RH1;Hss

3 � GP3;M 5T3; SVR � CA3Þ ! Tmin;Tmax; Sw;RH1

4 � GP4;M 5T4; SVR � CA4Þ ! Tmin;Tmax

Sensitivity analysis of algorithms and different models

Similar to other evolutionary algorithms, CA has random parameters with exact values required

for sensitivity analysis. The optimization algorithms contain details that should be determined

based on accurate values. For example, when decision variables such as the unknown values of

the SVM parameters are inserted into the algorithm, the size of the initial population of mem-

bers in the algorithms should be computed. Each member includes a value for the decision vari-

ables. In the current study, each egg includes a value for the unknown parameters of the SVM.

Many studies considered the value of the parameters of the optimization algorithm based on

Table 1. The information for the case study.

Statistical parameters Tmin Tmax RH1% RH2% Sw(km/hr) Hss (h) EP (mm/month)

Minimum 4.3 14.5 53 17 0.70 3 1

Maximum 26.5 40 96 85 14.20 10.5 12.1

Mean 16.85 29.12 84.39 5.86 4.8 7.5 4.78

σ
(standard deviation)

7.12 5.61 10.22 15.69 2.5 1.7 2.81

Cv

(coefficient of variation)

2.32 5.27 8.4 3.26 1.89 4.2 1.69

https://doi.org/10.1371/journal.pone.0217499.t001
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literature reviews, which is a random process, but the current article considers all probable

intervals for the random parameters of CA to prepare the method for the optimization problem

based on Table 3. Parameters such aso and population size are unknown for the method, and

accurate values of these parameters should be computed based on computation of the variation

of the objective function versus the variation of the parameter values.

Sensitivity analysis involves examination of changes in the objective function against

changes in the value of a parameter. Given this goal, the objective function of this study is to

minimize the RMSE, and the parameter value that minimizes the objective function is reported

as the best parameter value. For example, if we consider one combination, then the most

appropriate size for the community is 30 because the value of the objective function has the

lowest value. The maximum number of cuckoo eggs and the minimum number of cuckoo

eggs were five and three, respectively, because the objective function for the values listed was

the smallest. Moreover, the ω value for the first combination was 0.5. Other parameters and

values reported for the CA for other combinations are shown in Table 3.

Table 2. Correlation matrix of the used datasets.

Variable Tmin (˚C) Tmax(˚C) RH1% RH2% SW (km/hr) Hss EPm (mm/month)

Tmax 1.000

Tmax 0.832 1.000

RH1 -0.212 -0.568 1.000

RH2 0.378 -0.316 0.765 1.000

SW 0.396 0.625 -0.492 -0.245 1.000

Hss 0.012 0.512 -0.611 -0.681 0.216 1.000

EPm 0.721 0881 -.0711 -0.271 0.651 0.613 1.000

https://doi.org/10.1371/journal.pone.0217499.t002

Table 3. Sensitivity analysis for CA.

First input combination

Population size Objective function Maximum number of eggs Objective function Minimum number of eggs Objective function ω Objective function

10 1.111 3 1.241 1 1.111 0.300 1.231

30 0.981 5 0.981 2 0.999 0.500 0.981

50 1.212 7 1.112 3 0.981 0.700 0.999

70 1.321 9 1.114 4 1.110 0.900 1.141

Second input combination

10 1.565 3 1.231 1 1.456 0.30 1.345

30 1.112 5 1.112 2 1.312 0.500 1.112

50 1.121 7 1.118 3 1.112 0.700 1.116

70 1.234 9 1.124 4 1.118 0.900 1.121

Third input combination

10 1.341 3 1.281 1 1.487 0.30 1.312

30 1.009 5 1.009 2 1.231 0.500 1.009

50 1.114 7 1.112 3 1.009 0.700 1.114

70 1.118 9 1.116 4 1.118 0.900 1.118

Fourth input combination

10 1.445 3 1.381 1 1.389 0.30 1.376

30 1.115 5 1.115 2 1.115 0.500 1.115

50 1.121 7 1.124 3 1.128 0.700 1.129

70 1.123 9 1.261 4 1.131 0.900 1.132

https://doi.org/10.1371/journal.pone.0217499.t003
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Analysis of different models

Table 4 shows the performances of different models in the training, validation and test periods.

Different models of SVM-CA show the superior performance of the SVM-CA1 model with

Tmin;Tmax;RH1;RH2; Sw;Hss as inputs. This model reduced the RMSE values of the training,

validation, and testing sets by 0.1–7%, 0.2–8% and 2–10%, respectively, compared with the

SVM-CA2, SVM-CA3, and SVM-CA2 models. A comparison of SVM-CA2 and SVM-CA3

models shows that although the two models are equal in terms of the number of input parame-

ters, the SVM-CA3 model displays better performance than the SVR-CA2 model in the train-

ing, validation and test modes because SW has a higher correlation with EPm compared with

Hss. The current study applied Gaussian, trapezoidal and bell membership functions (MF) for

the ANFIS models. The values of RMSE, MAE and NSE show that the ANFIS with the Gauss-

ian membership function performs the best in the training, validation and testing modes, as

shown in Table 4.

Table 4. Computation of ET0 by different models for the station.

Model Training Validation Test

RMSE MAE NS RMSE MAE NSE RMSE MAE NSE

SVM-CA1 0.712 0.687 0.98 0.716 0.689 0.97 0.714 0.691 0.96

ε ¼ 0:005; c ¼ 42; g ¼ 1:12

SVM-CA2

0.744 0.722 0.96 0.749 0.729 0.95 0.751 0.732 0.94

ε ¼ 0:005; c ¼ 47; g ¼ 1:20

SVM-CA3

0.723 0.712 0.97 0.715 0.717 0.96 0.725 0.719 0.95

ε ¼ 0:007; c ¼ 39; g ¼ 1:24

SVM-CA4

ε ¼ 0:005; c ¼ 40; g ¼ 1:24

0.767 0.754 0.93 0.777 0.761 0.92 0.789 0.777 0.91

ANFIS (1)

(MF: Gaussian, ONF:7)

0.733 0.689 0.97 0.737 0.697 0.96 0.747 0.723 0.95

ANFIS (2)

(MF: Gaussian, ONF:7)

0.762 0.723 0.96 0.763 0.731 0.95 0.783 0.718 0.92

ANFIS (3)

(MF: Gaussian, ONF:7)

0.740 0.710 0.95 0.747 0.16 0.94 0.765 0.749 0.90

ANFIS (4)

(MF: Gaussian, ONF:7) ONF: Optimal number of functions

0.810 0.711 0.94 0.812 0.811 0.92 0.842 0.830 0.91

GP1 0.734 0.691 0.96 0.739 0.698 0.95 0.749 0.721 0.94

GP2 0.764 0.725 0.93 0.776 0.735 0.92 0.789 0.767 0.91

GP3 0.745 0.714 0.94 0.749 0.720 0.93 0.777 0.754 0.92

GP4 0.812 0.800 0.92 0.815 0.814 0.91 0.844 0.832 0.90

M5T1 0.789 0.721 0.94 0.791 0.746 0.93 0.811 0.789 0.92

M5T2 0.823 0.749 0.92 0.832 0.778 0.90 0.834 0.811 0.89

M5T3 0.815 0.734 0.93 0.819 0.745 0.92 0.819 0.799 0.91

M5T4 0.921 0.894 0.91 0.934 0.899 0.89 0.921 0.855 0.88

Empirical models

ET0� PT 0.937 0.911 0.88 0.941 0.954 0.90 0.959 0.957 0.5

ET0� MH 0.935 0.899 0.89 0.939 0.935 0.89 0.951 0.940 0.86

ET0� H 0.923 0.896 0.90 0.937 0.923 0.88 0.949 0.941 0.87

Extracted equations for GP

ET0 ¼ 2:12
Tmax

1:25Tmax
þ

lnðRH1Þ

0:25RH2
þ cosð2:25SwÞ þ 1:21Hss  GP1

ET0 ¼ 2:11
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinTmax3

p
þ 1:11 arctan 1:12

Tmin

� �
þ cosð1:11RH1 þHss  GP2Þ

ET0 ¼ 2:11Tmax þ 1:11 ln Tmin þ RH þ cosð1:25SwÞ  GP3

ET0 ¼ 1:12Tmax þ arctanð2:25TminÞ  GP4

https://doi.org/10.1371/journal.pone.0217499.t004
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For training, validation and testing, ANFIS (1) decreases RMSE and MAE by 1–14% and

3–17%, respectively, compared with other ANFIS models. This result indicates the superior

performance of the ANFIS (1) model. Compared with the SVM-CA1 model, the RMSE and

MAE values of ANFIS decreased by 7–15% and 5–18%, respectively, using SVM-CA, which

indicates the superiority of the SVM-CA model. The ANFIS model shows superior perfor-

mance over the GP and M5T models due to its lower RMSE and MAE values. Although

ANFIS (2) and ANFIS (3) have the same number of parameters, ANFIS (3) performs better

than ANFIS (2) with parameter Sw. The literature shows that maximum temperature, mini-

mum temperature and wind speed are the key parameters for the computation of ET0 [21–26].

Among the GP models, GP (1) with all possible inputs presents the best performance. The

MAE for GP (1) dropped below 4–9%, 3–15% and 5–14% in all three stages of training, valida-

tion and testing, respectively, compared with other GP models. A comparison of the GP and

SVM-CA models shows that the SVM-CA has better performance. For example, SVM-CA

reduced the RMSE and MAE by 5–15% and 5–17%, respectively, in the test stage compared

with GP. The weakest performance among the GP models occurred for GP (4) with inputs of

only two parameters. The results for the GP model show that the increase in inputs positively

affects the estimation of potential ET0. However, GP (2) and GP (3) have the same number of

parameters, but GP (3) has a more effective Sw parameter than GP (2). The GP models perform

better than the M5T models. For example, the RMSE of the GP models decreases from 20% to

8% for training compared with the M5T models. The same is also true for the validation and

testing stages.

The results of the M5T models show that the M5T1 performs better than the other M5T

models and has greater NSE coefficients for training, validation and testing than the other

M5T models. For example, the RMSE is reduced by 3–15%, 2–20% and 1–12% using M5T1

compared with the other M5T models for the training, validation, and testing stages, respec-

tively. Comparison of M5T and SVM-CA shows that the SVM-CA has a more favourable per-

formance, e.g., the RMSE and MAE for the SVM-CA model in the test stage are 12–21% and

10–22% lower than those for the M5T model. A comparison of the GP and M5T models shows

the superiority of the GP model over the M5T. Table 4 shows that the ET0� H model performs

better than the other experimental models, with the RMSE and MAE in testing reduced by

0.2% and 1.5%, respectively. A comparison of the SVM-CA with the empirical models shows

that the RMSE and MAE are decreased by 23–25% and 24–27%, respectively.

Fig 8 shows the scatterplots for the superior models, SVM-CA (1), GP (1), and M5T (1)

ANFIS (1), which indicate that the SVM-CA1 has a larger R2 value than the other models. The

SVM-CA model has less scattered estimates than the other models in the test mode. The R2

values for all methods are larger in the training mode than in the validation and testing modes.

Malik et al. [8] used the radial neural network method and the self-organized future map neu-

ral network for the same station used in the current study. Their study indicated that the first

input was the best combination for the simulation of ET0. The reported RMSEs for the radial

neural network and self-organized future map neural network in the test stage were 1.126 and

0.718, respectively [8]. In the current study, the RMSE value for the SVM-CA1 model is 0.714,

and thus the performance of the proposed model is better than the neural networks applied by

Malik et al. [8]. A comparison of R2 for SVM-CA1 with that of a multi-layer neural network

and self-organized future map neural network shows that it is equal to 0.9885 for SVM-CA1,

whereas Malik et al. [8] reported values of 0.949 and 0.945.

Fig 9 shows the performances of different models based on the agreement distance (d)

index, which indicates that SVM-CA has the highest values for the training, validation and

testing, followed by the ANFIS in ET0 simulation.
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Table 5 compares the results with the literature reviews for this case study. The mentioned

literature reviews simulated the ETo based on different methods. The period of study in the

mentioned literature review was January 1990 to December 2016. The co-active neuro-fuzzy

inference system (CANFIS), multi-layer perceptron neural network (MLPNN) and radial basis

neural network (RBNN) were considered for the simulation. The results indicated that the

SVM-CA1 could decrease RMSE by 35%, 36% and 41% compared with CANFIS, MLPNN and

RBNN, respectively. Additionally, the comparison of results based on NSE shows that the

SVM-CA produces better results than CANFIS, MLPNN and RBNN. Furthermore, the R2

value for the SVM-CA1 shows better performance compared with the other methods.

One point is related to the accuracy of the results for the different methods, and other

points indicate the method of preparing different methods. ANFIS can receive many inputs

and has a high capability, but accurate determination of the structure of the methods, such as

the number of neurons or type of membership function, is complex. The SVM has a simple

Fig 8. R2 coefficient for: (a) SVM-CA1; (b) ANFIS (1); (c) GP (1); and (d) M5T (1).

https://doi.org/10.1371/journal.pone.0217499.g008
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structure that can be used to improve the results of the method based on processes such as the

optimization algorithm. The relationship for GP showed that the method based on its ability

to include different mathematical operators extracted the four different models for different

inputs, but it should be noted that the crossover and mutation rate or population size should

be determined for each input group. Thus, selection of accurate values for the crossover and

mutation rate is complex, which can affect the accuracy of results. All three methods based on

higher accuracy and accessibility of the data show better performance than the empirical mod-

els. Models such as AFIS, GP and SVM have adjustable parameters such that accurate determi-

nation of the architecture of ANFIS is complex, and therefore, these methods are effective

when no simple mathematical model is available for simulation of nonlinear computations.

The application of ANFIS or a more complex method is not a good choice if an easy and solv-

able method is available for the ET0 simulation.

When the Hargreaves model gives better accuracy than the two other methods, it means that

the temperature parameter is highly important and effective for the simulation because this

model is based on mean temperature. However, three empirical weaknesses can be observed: (1)

the models can be accurate for a limited region; 2) the measurement of input data can be difficult

for certain areas, and soft computing methods can simulate the results with fewer inputs; and 3) it

is difficult to compare the methods because of method-specific method variables. Additionally,

when the ANFIS, SVM-CA or tree model presents the final simulation, they are comprehensive

because they consider the effect of different parameters on the ET0 simulation, whereas the

empirical models, such as the Hargreaves model or other empirical models, are allocated to one

or a limited number such as temperature or sunshine, and do not consider large input data for

the simulation. Finally, the authors should emphasize that the new method is not limited to a

Fig 9. Agreement distance (d) index for different methods.

https://doi.org/10.1371/journal.pone.0217499.g009

Table 5. Comparison of results with the literature reviews for the testing level.

Index 50% total available data was used in the testing model SVM-CA1 Present article

CANFIS [8] MLPNN [8] RBNN [8]

RMSE (mm) 1.112 1.123 1.126 0.714

NSE 0.812 0.812 0.807 0.96

R2 0.9212 0.9054 0.913 0.9444

https://doi.org/10.1371/journal.pone.0217499.t005
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specific region, as in empirical models, because the application of the optimization algorithm for

the SVM allows the users to prepare the method for different inputs for different regions. The

new method can also be used in other fields in hydrological problems. Finally, an important fac-

tor is related to the computation time. A PC computer system with an i5 CPU 2.4 GHZ processor

and 500 GB RAM was used in the ET0 simulation. The computational times for the SVM-CA

were 35 s, and 89 and 78 s for the ANN and tree models, respectively. Thus, the decision maker

can consider the different factors for the application of different methods.

The SVM-CA model can be advanced such that the method does not use Eq 20 and correla-

tion coefficient can simulate ET. First, a multi-objective CA (MCA) can be defined based on

the available literature [26,27], and SVM-MCA is considered with the dataset such that the

name of the input variables and unknown SVM parameters are considered as decision vari-

ables. The aim of the problem is minimizing the number of input variables and error of the

SVM for ET0 simulation. The decision variables are the names of the input parameters and

parameters of SVM and are inserted into the algorithm as the initial population of the algo-

rithm. When the decision variables are generated, the SVM runs, and the objective function is

computed for each population member. The decision variables in each loop and iteration are

modified based on defined levels of MCA, and the SVM simulates the ET0 based on the cor-

rected decision variables. The process is considered until the stopping criteria are satisfied for

the decision maker (Fig 10).

Conclusion

One of the major keys to constructing adequate plans for agricultural water and irrigation

management is accurate estimation of ET0. The current study presents a new method based on

Fig 10. SVM-MCA structure.

https://doi.org/10.1371/journal.pone.0217499.g010
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SVM and CA for the simulation of monthly ET0. To assess the performance of the proposed

simulation model, the model was examined using ET0 data from India. Different scenarios for

the simulation model were investigated with different alternative combinations of maximum

temperature, minimum temperature, relative humidity, wind speed and sunshine hours. The

results showed that the proposed SVM-CA model was more accurate than the GP, ANFIS and

M5T models for simulating ET0. The proposed ET0 simulation model based on the SVM-CA

method successfully reduced the RMSE and MAE by 5–15% and 5–17%, respectively, in the

testing stage compared with GP. Furthermore, the study found that the best scenario combina-

tion included Tmin;Tmax;RH1;RH2; Sw;Hss as inputs, which resulted in superior performance

over all other models. The worst scenario performance considered only maximum and mini-

mum temperatures as inputs. The M5T model supplied the worst performance out of all the

models, and as a result, is not recommended for simulating ET0.

A comparison analysis of the experimental models with SVM-CA showed that SVM-CA

was more accurate, with a lower RMSE and MAE. Moreover, sensitivity analyses were con-

ducted to evaluate the most effective input variable for the estimation of ET0. The model with

four parameter input combinations indicated that the Sw parameter was a more essential vari-

able in simulation of ET0 than the Hss parameter. Future studies should focus on developing

the SVM based on new evolutionary algorithms and using a variety of kernel functions to

develop more accurate simulation models.
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11. Guven A, Kişi Ö. Daily pan evaporation modeling using linear genetic programming technique. Irrig Sci.

Springer Nature; 2010; 29: 135–145. https://doi.org/10.1007/s00271-010-0225-5

12. Cobaner M. Evapotranspiration estimation by two different neuro-fuzzy inference systems. J Hydrol.

Elsevier BV; 2011; 398: 292–302. https://doi.org/10.1016/j.jhydrol.2010.12.030

13. Karimaldini F, Teang Shui L, Ahmed Mohamed T, Abdollahi M, Khalili N. Daily Evapotranspiration

Modeling from Limited Weather Data by Using Neuro-Fuzzy Computing Technique. J Irrig Drain Eng.

American Society of Civil Engineers (ASCE); 2012; 138: 21–34. https://doi.org/10.1061/(asce)ir.1943-

4774.0000343

14. Tabari H, Hosseinzadeh Talaee P, Abghari H. Utility of coactive neuro-fuzzy inference system for pan

evaporation modeling in comparison with multilayer perceptron. Meteorol Atmos Phys. Springer Nature;

2012; 116: 147–154. https://doi.org/10.1007/s00703-012-0184-x

15. Samui P, Dixon B. Application of support vector machine and relevance vector machine to determine

evaporative losses in reservoirs. Hydrol Process. Wiley; 2011; 26: 1361–1369. https://doi.org/10.1002/

hyp.8278

16. Ladlani I, Houichi L, Djemili L, Heddam S, Belouz K. Modeling daily reference evapotranspiration (ET0)

in the north of Algeria using generalized regression neural networks (GRNN) and radial basis function

neural networks (RBFNN): a comparative study. Meteorol Atmos Phys. Springer Nature; 2012; 118:

163–178. https://doi.org/10.1007/s00703-012-0205-9
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