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Abstract: One of the most important issues in the field of water resource management is the optimal
utilization of dam reservoirs. In the current study, the optimal utilization of the Aydoghmoush Dam
Reservoir is examined based on a hybrid of the bat algorithm (BA) and particle swarm optimization
algorithm (PSOA) by increasing the convergence rate of the new hybrid algorithm (HA) without
being trapped in the local optima. The main goal of the study was to reduce irrigation deficiencies
downstream of this reservoir. The results showed that the HA reduced the computational time
and increased the convergence rate. The average downstream irrigation demand over a 10-year
period (1991–2000) was 25.12 × 106 m3, while the amount of water release based on the HA was
24.48 × 106 m3. Therefore, the HA was able to meet the irrigation demands better than some other
evolutionary algorithms. Moreover, lower indices of root mean square error (RMSE) and mean
absolute error (MAE) were obtained for the HA. In addition, a multicriteria decision-making model
based on the vulnerability, reliability, and reversibility indices and the objective function performed
better with the new HA than with the BA, PSOA, genetic algorithm (GA), and shark algorithm (SA)
in terms of providing for downstream irrigation demands.

Keywords: hybrid algorithm; particle swarm optimization algorithm; bat algorithm; water resources
management

1. Introduction

Continuous droughts and climate change make optimal operations of existing water resource
systems particularly important, especially when there is a shortage of resources and increased
demands [1]. Recently, water resource management (WRM) planning has been of great importance,
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and thus the water resources behind dams are exploited by the best possible methods [2]. WRM involves
ensuring the best possible decisions regarding water releases and the amounts of water stored behind
dams. Recently, mathematical models and evolutionary algorithms have been used to optimize the
use of stored water in the reservoirs of dams. Various studies have shown that these algorithms can
be used to plan WRM by reducing computational time and solving multiobjective WRM issues, as
well as demonstrating high resilience in various scenarios, such as climate change or droughts [3].
Boluri-Yazdeli et al. [4] used the genetic algorithm (GA) along with operating rule curves for planning
and managing reservoir water resources, with the aim to reduce downstream irrigation deficiencies.
The released water was considered to be a decision variable. Different operators, such as mutation
and crossover, were applied to the decision variable. The objective function was used to decrease
monthly irrigation deficits. The results showed that the GA, along with the third-order command
curves, provided a higher reliability index of irrigation needs.

1.1. Background

Bozorg-Haddad et al. [5] used a biogeography-based algorithm to reduce the hydrologic
deficiencies of a power plant. This algorithm performs based on the immigration of biological
species. The species location was considered to be a decision variable. The results showed that with
a high convergence speed, the biogeography-based algorithm was able to assess the best problem
response. In another study, genetic programming (GP) was used to plan and manage water resources
and increase the energy production of a power plant [6]. Water release was considered to be the
decision variable, and reservoir storage was considered to be the state variable. The rule curves–time
series for released water were extracted based on reservoir inflow and storage. The results showed that
the GP method could provide downstream hydroelectricity needs at a 90% confidence level compared
to the GA and PSOA. Additionally, the convergence speed of the GA was less than the PSOA and
biogeography-based algorithm convergence speeds. Bozorg-Haddad et al. [5] used the BA to increase
energy efficiency in a 10-reservoir system. The results showed that BA could increase the profit from
energy production by 20%, 25%, and 30% compared to the GA, PSOA, and harmonic search algorithm
(HSA), respectively. The initial location of bats was considered to be a decision variable, and the sound
ability of bats was used for the study.

An invasive weed optimization algorithm was used by Azizipour et al. [7] to reduce irrigation
deficiencies. This algorithm was inspired by weed life and performed based on weed production in the
environment. The decision variables, such as released water volumes, were distributed in the search
space of the problem based on the weed location distribution in the environment. The results showed
that this algorithm could lower the downstream water demands by decreasing the vulnerability
index and increasing the reliability of the GA and PSOA. Mansouri et al. [8] used modified version
of Penguins Search Optimization Algorithm (PeSOA) for the operation of a multipurpose reservoir
water system to meet hydroelectricity needs. The results showed that the PeSOA could achieve to
generate optimal solutions for the operation rules that were closed to the global solution with less
computational time compared to the GA.

Shark Algorithm (SA) has been used to increase the energy gain from a multireservoir system with
several power plants [9]. The results indicated that this algorithm increased energy production for the
multipower system. Additionally, the SA had interesting operators, such as rotational movement for the
sharks, which causes the sharks to avoid being trapped in the local optima. In addition, Spider Monkey
Algorithm (SMA) has been applied to irrigation management with the aim of decreasing irrigation
deficits in multireservoir systems [10]. The water released from the reservoirs was considered to be a
decision variable. The results indicated that this new algorithm, which is based on the social behavior
of monkeys, can obtain a global solution with less computation time than the PSOA and GA. For a case
study in Iran, Mousvai et al. [11] applied the crow algorithm (CA) for irrigation management. This
algorithm acts based on the behavior of crows attempting to find food. The results showed that CA
requires less computational time to find the global solution than the PSOA and GA. Karami et al. [12]
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applied the Krill Algorithm (KA) to extract rule curves for irrigation management. The results revealed
that the KA could supply the irrigation demands with a lower vulnerability index than the SA, GA,
and PSOA. Furthermore, Kidney Algorithm (KA) and Weed Algorithm (WA) have been investigated
to decrease hydropower deficits [13–15]. The KA performed based on different operators, such as
reabsorption, filtration, and secretion. The results showed that the KA could increase the annual power
generation by 12% and 2% compared to the PSOA and GA, respectively. On the other hand, the WA
showed a high potential for generating optimal operation rules for dam and reservoir water system;
however, it has experienced difficulty in adaptation to dam and reservoir system features and the
convergence rate is relatively slow. Ming et al. [16] optimized the performance of a multireservoir
system using the cuckoo algorithm, considering the water level as the decision variable, which is the
main factor affecting the amount of the generated hydropower. The study targeted the maximization
of hydropower generation during all possible climate condition scenarios (dry, normal, and wet year).
The results indicated that the cuckoo algorithm could successfully generate operation rules to supply
hydropower during the dry year adequately with minimal shortage.

1.2. Problem Statement

Until now, evolutionary algorithms have been shown to have high potential for solving WRM
problems. Most recently, a motivation for developing a hybrid optimization model using two
different meta-heuristic algorithms in parallel has attracted researchers to be implemented for dam and
reservoir water systems rather than using single meta-heuristic algorithms [14]. The hybridization was
developed between Artificial Fish Optimization Algorithm (AFOA) and Particle Swarm Optimization
Algorithm (PSOA) for a single reservoir water system with a single purpose. The main challenge
experienced in developing the hybrid model is difficulty in adjusting the communication procedure
between both algorithms effectively [14]. Another hybrid model was developed using BA and PSOA
with a certain communication process that was easily implemented but not efficient in terms of the
convergence rate [14]. However, evolutionary algorithms also have some shortcomings, such as
becoming trapped in local optima, low convergence rates, immature solutions, and early convergence
in some algorithms [17].

One of the evolutionary algorithms that are successful in WRM is the BA [18]. However, the BA
usually becomes trapped in local optima, and the convergence rate of the BA is slow [5]. Hence, in the
current study, a hybrid approach is presented in an attempt to solve the problem: the PSOA is coupled
with the BA. This hybrid approach improves the BA’s capabilities. The PSOA has been highly relevant
to WRM issues [19–21]. The structure of the proposed hybrid algorithm (HA) is such that both
algorithms (PSOA and BA) run in parallel and independently. The best responses from one algorithm
compensate for the worst responses of the other algorithm. Therefore, by improving the responses, the
BA will not become trapped in the local optima according to the PSOA, and the time needed to achieve
the best response is reduced.

1.3. Novelty and Objective

BA suffers from a few drawbacks, such as slow convergence and poor exploitation. The reason
is that the search strategy used in BA only updates one variable at a time, which results not only in
trapping in local optima, but also slow convergence [22]. To address this issue, improvements to the BA
algorithm have been introduced by hybridizing with other meta-heuristic algorithms and employing
multiple search strategies [5]. While the convergence of these BA variants have been prominently
increased, most of these improved BA algorithms are still confined to updating one variable at a time
and must be re-checked to optimize the objective function. In particular, although this kind of updating
strategy may achieve fairly good performance on the reservoir’s experienced deterministic variables
(reservoir inflow) and relatively independent constraints of the system physical characteristics, in brief,
these optimization applications could be improved. For optimizing each variable independently,
the performance of these improved BA algorithms for nonseparable problems is still unsatisfactory.
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This may become a major restriction to BA algorithms because, when given an optimization problem,
it is unrealistic to require that the problem is separable. In fact, most dam and reservoir water systems
and most real-world optimization problems are nonseparable.

The motive of this idea is to add diversity that enhances the convergence rate locally to improve
the overall performance of the proposed algorithm. This policy works against the premature search
capability by gathering together all the best candidates under the same roof to undergo evolution.
Afterwards, each iteration revision takes place to improve weakness, which results in improved search
capability. Therefore, it is of great significance if the BA algorithm can be fundamentally enhanced for
complex nonseparable problems.

This paper is focused on enhancing the BA for solving complex nonseparable problems. Through
incorporating differential search strategies into hybrid algorithm framework, we propose a BA and
PSOA hybrid algorithm. The proposed algorithm employs different search strategies of differential
evolution in both employed and onlooker initial parameter updating phases. By means of differential
search strategies, more variables are updated each time based on the combination of mutation
and crossover. Undoubtedly, this will be very beneficial for enhancing the ability of the proposed
optimization algorithm in solving complex nonseparable problems. In addition, in this study,
special attention has been given to the selection of a dam and reservoir water system that represents a
nonseparable problems, Aydoghmoush Dam and reservoir, Iran. Different case studies will experience
completely different features and characteristics that should be investigated in order to assure the
generalization of the proposed model. For the current research, the case study is Aydoghmoush Dam
and reservoir water system which is highly nonlinear in terms of the elevation–surface area–storage
relationship, the reservoir water inflow pattern is considered highly stochastic, and most importantly,
it is nonseparable.

The new HA is robust for the following reasons: (1) the HA can increase the diversity of the
population number and the chance of obtaining global solutions; (2) the HA eliminates bad-quality
solutions of one algorithm by replacing it with a better solution from the other algorithm to increase
the convergence speed; and (3) early convergence and immature solutions of the PSOA are avoided by
applying the BA. The HA is used for a dam reservoir system (Aydoghmoush basin in Iran) to reduce
irrigation deficiencies. The results of the HA are compared to the BA, PSOA, GA, and SA. A multicriteria
decision-making model is also used to select the best method. This basin has encountered water
scarcity for supplying irrigation demands.

2. Materials and Methods

2.1. Bat Algorithm (BA)

Bats are mammals that detect differences in obstacles and prey according to the sound frequencies
received from their surroundings. Bats can determine the atmosphere of their surroundings to find
prey by generating loud sounds and then receiving the recursive frequencies. The BA acts based on
the echolocation ability of bats to find the global solution [22]. The speed of the bat and its position are
important in the BA operation. The following assumptions are considered for the simplification of this
algorithm [18]:

(1) All bats use their echolocation ability to find prey. This ability helps bats identify prey and obstacles.
(2) The bats fly randomly with a speed of vl in the position of yl by producing a minimum frequency

of f min; thus, the wavelength of the sound produced is λ and the loudness is A0.
(3) Although the loudness can be changed, the value of this parameter is considered to be between

A0 and Amin.

The following equations are used to update the frequency, velocity, and position of the bats:

vl(t) = [yl(t) −Y∗ ] × fl (1)



Sustainability 2019, 11, 2337 5 of 18

yl(t) = yl(t− 1) + vl(t) (2)

where yl(t− 1) is the bat’s position at time t − 1, β is a random vector from 0 to 1, Y∗ is the bat’s best
position, fl is the bat’s sound frequency, fmax is the maximum frequency, l; the index of number of bats
(l = 1, 2, . . . , population size), and fmin is the minimum frequency. The bat uses the following equation
for local searches:

y(t) = y(t− 1) + εA(t) (3)

where ε is a random number (in the interval of −1 to 1), and A(t) is the loudness of the sound.
When the bat finds prey, the pulse rate of the sound (rl) increases, but the loudness decreases.

The pulse rate varies between 0 and 1. The loudness and pulse rate should be updated for each
algorithm level. The following equation is used for updating the pulse rate:

rt+1
l = r0

l (1− exp(−γt))At+1
l = αAt

l (4)

where rt+1
l is the new pulse rate and α and γ are the constant coefficients. When 0 < α < 1 and γ > 0,

At
l → 0 and when t→∞ , rt

l → r0
l .

Different parameters of the BA can be seen in the above equations. These parameters have
different roles in the optimization process. For example, the decision variables are inserted into the
algorithm based on the initial bat population. The initial position of the bats is considered to be a
decision variable. Additionally, the frequency is used to update the velocity for each level, and then,
the bat can find prey as one objective. Based on updating these parameters, the bats will receive the
frequency and adjust their velocity to find the best position.

2.2. Particle Swarm Optimization Algorithm

The particle swarm optimization algorithm (PSOA) considers the mass motion of particles with
random velocities and positions. The particles can update their positions and velocities based on
personal experience, and the particles can also use the experience of other particles to improve their
positions and velocities. The process begins with a set of particles. Then, searches are performed to
determine the optimal solution during the successive iterations. The ith particle is associated with
a position in an s-dimensional space, which shows the number of decision-making variables in the
problem. The values of the s variables that determine the positions of particles are possible solutions to
the optimization problem. Each particle i is characterized by three vectors: the Xi vector, which is the
current position of the particle; the Yi vector, which is the best position that the particle has reached in
its previous iteration; and the particle velocity vector shown with Vi. The positions and velocities of
particles in the algorithm are updated based on the following equations [23,24]:

Viter+1
i = χ

[
wViter

i +
c1rand(Yiter

i −Xiter
i )

∆T +
c2rand(Yiter

∗ −Xiter
i )

∆t

]
Xiter+1

i = Xiter
i + Viter+1

i ∆t
(5)

where Viter+1
i is the new particle velocity in each iteration, w is the inertia coefficient, and c1 and c2 are

the acceleration coefficients, Yiter
∗ is the best current solution among the solutions, Xiter+1

i is the new
particle position, and ∆t is the time step.

2.3. New Hybrid of the BA and PSOA

The hybrid structure of the new algorithm is based on the communication strategy between the
BA and PSOA. The main idea for the HA is substitution of the worst solutions from each algorithm
with the best solutions from the other algorithm. The initial population is divided into subgroups that
act independently from each other and then share information. If the initial total population for the HA
is considered to be N, then N1 and N2 will be the population of the bat and particle swarm algorithms,
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respectively. Figure 1 shows the communication strategy for the two algorithms. Different HA levels
can be defined as follows:

• First, the initial populations are considered for both algorithms (N1 and N2 for the BA and PSOA,
respectively). In addition to the positions and initial speeds of the particles, the positions and
velocities of the bats are also defined.

• Evaluation: the solution candidates should be evaluated separately based on the computation of
the objective function for each algorithm.

• Update: the velocity and position for the PSOA are updated based on Equation (5). The velocity
and position for the BA are updated based on Equations (1) and (2).

• Communication strategy: the k numbers of the best solution candidates are selected and then
these solutions are copied and transferred to the other algorithm to replace the worst solution.

• Termination: levels 2 to 4 are repeated to reach the maximum iteration and then the best solutions
from both algorithms will be recorded.
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2.4. Shark Algorithm

The SA operates based on the location and velocity of sharks. Sharks hunt in the water according
to their olfactory receptors. The following hypotheses are considered in relation to the SA [17]:

• Each fish is prey for the shark in the water. The fish have a wounded body and blood leaks from
the fish’s body. Thus, the velocity of the fish moving in the water is nonsignificant compared to
the shark.

• The blood from the body of the wounded fish is permanently injected into the water. Thus, the shark
recognizes the location of the fish through its olfactory ability.

• Each fish is considered to be a source of blood production.
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The sharks have a
[
X1

1, X2
1, . . . , X1

NP

]
position where NP is the size of the shark population, Xi

l is
the initial position of the shark, and each shark position contains several dimensions according to the
following equation:

X1
i =

[
x1

i,1, x1
i,2, . . . x1

i,ND

]
, i = 1, . . .NP (6)

where x1
i, j represents the jth position of the ith shark. In other words, the jth decision variable is the jth

shark position. Moreover, ND is the number of decision variables. Furthermore, the sharks have a
velocity of Vl

i . Each velocity component is shown based on the following equation:

Vl
i =

[
v1

i,l, v1
i,2, . . . , v1

i,ND

]
(7)

where Vl
i is the initial velocity of the ith shark and v1

i,l presents jth dimension of the ith shark’s velocity
or equivalently jth decision variable of the ith individual. Moreover, the more scent it receives from
the blood particles in the water, the more the velocity of the shark increases. Thus, the objective
function can be considered to be the intensity of the odor from the prey received by the shark. In this
case, the velocity changes with the changes in the objective function, and the velocity can be defined
according to the following equation:

Vk
i = ηk ·R1 · ∇(OF)

∣∣∣
xk

i
(8)

where OF is the objective function, R1 is a random number from 0 to 1, ηk is a random number from 0
to 1, Vk

i is the velocity of the shark, and k is the number of sharks that move forward. As the motion of
the shark is inertial, the velocity of the shark’s movement is corrected using the following equation:

vk
i, j = ηk·R1·

∂(OF)
∂x j

|xk
i, j
+ αk·R2·vk−1

i, j (9)

where αk is the momentum coefficient and R2 is a random number from 0 to 1. Furthermore, the
maximum shark velocity is 80 km/h, and the minimum shark velocity is 20 km/h. Therefore, the speed
limit coefficient is added to Equation (9):

∣∣∣∣vk
i, j

∣∣∣∣ = min


∣∣∣∣∣∣ηk ·R1

∂(OF)
∂x j

∣∣∣∣∣∣
xk

i, j

+ αkR2 · vk−1
i, j |,

∣∣∣∣βk · vk−1
i, j

∣∣∣∣
 (10)

where βk is a limiting factor for velocity.
The shark’s position is updated based on the following relationship:

Yk+1
i = Xk

i + Vk
i ∆tk (11)

where Yk+1
i is the new shark position and ∆tk is the time step. Moreover, using rotational motion, the

sharks can examine the search space with high accuracy, and the following equation, based on the
rotation of the sharks, is the basis for the local search:

Zk+1,m
i = Yk+1

i + R3Yk+1
i (12)

where Zk+1,m
i is the new position of the shark after rotation, random numbers are from −1 to 1, and m is

the number of points that the shark searches. The decision variables for the SA are the shark position,
and the sharks attempt to find the prey based on received scent intensity. Thus, the sharks update their
positions based on their velocity in each iteration.
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2.5. Genetic Algorithm

In the GA, a primary population is generated. In the iteration process, subsequent populations
are generated to improve the objective function. At each stage, parents from the current population are
selected to produce individuals or children of the next generation. Accordingly, the probability that
one population will have a better performance than the other is selected. Selected people produce the
next population according to two genetic operators: combination and mutation. For the combination
operator, the following equations are used [17]:

Popnew
i = αPopold

i + (1− α)Popold
j (13)

Popnew
j = αPopold

j + (1− α)Popold
i (14)

where Popnew
i is the ith child, α is a random number from 0 to 1, Popold

i is the ith parent, Popold
j is the jth

parent, and Popnew
j is the jth child

The mutation is based on the following equation:

Popnew
j,i = Varlow

j,i + β
(
Varhi

j,i −Varlow
j,i

)
(15)

where Popnew
j,i is the new gene i in the jth chromosome, Varhi

j,i is the upper limit of the ith gene in the

jth chromosome, Varlow
j,i is the lower limit of the ith gene in the jth chromosome, and β is a random

number from 0 to 1.
In the hybrid process, both new individuals make gene changes between the two individuals.

A mutation operator is used to change the chromosomes and to transform genes to create diversity.

3. Case Study

As a clay-core earth dam, the Aydoghmoush Dam is located in southwestern Mianeh,
East Azarbayjan Province, Iran. The purpose of the dam is to supply and improve the irrigation
demands of 15× 103 ha of land. The length and top width of the dam are 297 m and 12 m, respectively.
The maximum and minimum storage volumes of the dam reservoir are 145.7× 106 m3 and 8.9× 106

m3, respectively. The study period is 10 years (1991–2000) with monthly inputs, as shown in Figure 2.
The Aydoghmoush River basin climate type is semiarid and the average annual discharge of river in
the basin is 190× 106 m3 and the average annual rainfall is 340 mm. This case study is very important
for policy makers to supply irrigation demands in agricultural areas. Different crops, such as wheat,
barley, alfalfa, soybean, silage corn, forage, potato, and walnut are grown in the downstream area.
In fact, the released water is considered to be a decision variable and unknown value, and thus, the
water volume should simultaneously supply the downstream demands of the downstream farmers.

The following objective function is used to minimize irrigation deficiencies:

Minimize(OF) =
T∑

t=1

(Dt −Rt

Dmax

)2

(16)

where OF is the objective function, Dt is the required irrigation volume, Rt is the released water,
and Dmax is the maximum water release during the operation period.

In addition, the continuity equation is written as follows:

St+1 = St + It − Losst −Rt − Spt (17)

where St+1 is the reservoir storage at time t + 1, St is the reservoir storage at time t, It is input to the
reservoir, Losst is the water losses, Rt is the water release, and Spt is the overflow. The water loss and
overflow values are obtained from the following equations:
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Losst = At × Evt (18)

where At is the reservoir surface area and Evt is the evapotranspiration from the reservoir.

Spt =

[
0← i f (St < Smax)

Smax − St ← i f (St) > Smax

]
(19)
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Figure 2. Monthly inflow to the Aydoghmoush Dam.

Problem constraints are displayed according to the following equation:

0 ≤ Rt ≤ Dt

Smin ≤ St ≤ Smax
(20)

where Dt is irrigation demand at time t. If the constraints are not met, the following penalty functions
are used and added to the objective function:

P1,t =

 0← I f (St+1) > Smin(
(Smin−St+1)

2

Smin

)
← otherwise

 (21)

P1,t =

 0← I f (St+1) < Smax(
(Smax−St+1)

2

Smax

)
← otherwise

 (22)

P3,t =

 0← i f (Rt) < Dt
(Rt−Dt)

2

Dmax
← otherwise

 (23)

To evaluate the performances of different algorithms, the following indices are used in WRM:

(1) Volumetric reliability index: this is the volume of released water over the entire period versus the
total irrigation requirement amounts. This index is calculated based on the following equation [9]:

αV =

T∑
t=1

Rt

T∑
t=1

Dt

× 100 (24)

where αV is the volumetric reliability.
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(2) Vulnerability index: the Vulnerability index is defined as the maximum failure rate created
during the operation period of a reservoir system. The smaller this index, the better the system
performs [23]:

λ = MaxT
t=1

(Dt −Rt

Dt

)
× 100 (25)

where λ is the vulnerability index.
(3) Resiliency index: this shows how quickly the system will recover if the period is a failure.

For example, if in a 12-month operation period 4 period failures occur, the sequence of
failure periods is important and affects the system. However, higher percentages of this
index are desirable.

γi =
fsi

Fi
× 100 (26)

where γi is the resiliency index, fsi is the number of occurred failure series, and Fi is the total
number of failed periods.

A multicriteria decision-making index is also used to evaluate the performance of different
algorithms. Based on the weighted sum model, the weighted product model, considering the objective
function value, volumetric reliability, vulnerability, and resiliency index, attempts to determine the
best algorithm in the optimization process. First, the value of each derived index for each algorithm is
normalized based on the following relationships:

xe f =
xe f

Maxexe f
← f or(bene f ical) criteria (27)

xe f =
Minexe f

xe f
← f or(nonbene f ical) criteria (28)

where Maxexe f is the maximum value of each index, xe f is the value of each index, xe f is the normalized
value of each index and Minexe f is the minimum value of each index. Equation (27) is used for indices
whose high percentages are desirable, and Equation (28) is used for indices whose low percentages are
desirable. Then, the decision variable matrix for the weighted sum and weighted product is obtained
as follows:

φe
1 =

nc∏
f=1

(
xe f

)
w f (29)

φe
2 =

nc∏
f=1

(
xe f

)
w f (30)

where w f is the weight of each index. In the present study, considering that all indices have the same
importance, the weights of the indices are equal to each other. Finally, the decision index φ is calculated
as follows:

φ = λ
(
φe

1

)
+ (1− λ)

(
φe

2

)
(31)

where λ is a coefficient from 0 to 1. In the current study, this coefficient began at zero, and then a value
of 0.1 was added in each step. The values of the decision indices are compared for all algorithms.
The algorithm with a higher φ is chosen as the preferred algorithm. A pairwise comparison process is
used to compare the new HA to other algorithms, based on the number of times the φ of each algorithm
is larger than the HA (losses) and the number of times the φ of each algorithm is lower than the HA
(victories).

The steps of running the HA for reservoir operations are as follows:
The decision variables are inserted in the new HA based on the initial population of bats

and particles.
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(1) The random parameters are determined based on the sensitivity analysis for the BA and PSOA.
(2) The continuity equation is used to calculate the reservoir storage for the next operation period.
(3) The reservoir storage and released water are compared to the permissible values. If the released

water and reservoir storage values are not in the permissible domain, the penalty functions
(Equations (21)–(23)) are applied to the solutions. The penalty functions increase the convergence
velocity and accuracy of the HA.

(4) The objective function for each member of the population is computed, and steps 3 to 4 are
repeated for all operation periods.

(5) Different HA levels are applied to the solutions based on Figure 2.
(6) The convergence criteria are checked; if the criteria are satisfied, the algorithm is finished;

otherwise, the process returns to step 2.

4. Results

Table 1 describes the results of the sensitivity analysis of the random parameters of different
algorithms. For example, the optimum population size for the HA is 60, whose objective function
(1.12) is smaller than the other population sizes. The bat’s maximum audio frequency (f max) is 7.0 Hz,
and the minimum bat audio frequency (f min) is 2.0 Hz, and the objective function of 1.12 is associated
with these two values. The best value for acceleration coefficients (c1 = c2) is selected as 2.0, and the
inertia coefficient (w) is 0.7 with an objective function of 1.14.

The probabilities of mutation and crossover for the GA are 0.6 and 0.5, with objective functions of
3.15 and 3.15, respectively. The optimum size of the SA is 60. Other optimum values of the SA (β, M
and α) are 4, 200 and 0.6, respectively. The size population for the GA is 100 chromosomes.

Table 1. Sensitivity analysis for different algorithms, hybrid algorithm (HA), genetic algorithm (GA),
and shark algorithm (SA).

Hybrid Algorithm (HA)

Population
Size

Objective
Function f min

Objective
Function f max

Objective
Function c1 = c2

Objective
Function w Objective

Function

20 2.24 0 2.34 3 1.98 1.6 1.45 0.3 1.48
40 1.98 1 1.76 5 1.67 1.8 1.38 0.5 1.33
60 1.12 2 1.12 7 1.12 2 1.12 0.7 1.14
80 1.45 3 1.34 9 1.34 2.2 1.16 0.9 1.24

Genetic Algorithm (GA)

Population
Size

Objective
Function

Mutation
Probability

Objective
Function

Crossover
Probability

Objective
Function

20 4.78 0.2 3.55 0.1 4.24
40 3.14 0.4 3.34 0.3 3.98
60 3.55 0.6 3.15 0.5 3.15
80 3.87 0.6 2.98 0.7 3.76

Shark Algorithm (SA)

Population
Size

Objective
Function β

Objective
Function M Objective

Function α
Objective
Function

20 3.24 2 3.11 100 3.1 0.2 3.24
40 2.98 4 2.78 200 2.78 0.4 2.96
60 2.78 6 2.98 300 2.89 0.6 2.78
80 2.89 7 3.11 400 2.91 0.8 2.82

Table 2 shows the results of 10 random runs of the algorithms. The average response of the
10 HA runs is 1.12. However, the values for the SA, BA, PSOA, and GA are 2.79, 2.86, 3.0, and 3.55,
respectively, and there is an overestimation of 149.1, 155.4, 167.8, and 217.0 percent with respect to the
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HA, respectively. Therefore, the objective function of the problem is based on the HA, which represents
the minimum irrigation deficiencies.

The calculation time for the HA is 50 s, while the calculation times are 65, 87, 95, and 112 s for the
SA, BA, PSOA, and GA, respectively. The HA has reduced computational time compared to the other
algorithms. The variation coefficient for the 10 HA run implementations is smaller than that of the
other algorithms, which indicates that the results of the one-time HA execution are also reliable.

Table 2. Results of the 10 random runs for different algorithms.

Run HA SA BA PSO GA

1 1.12 2.78 2.85 2.99 3.55

2 1.14 2.78 2.85 3.12 3.76

3 1.12 2.89 2.93 2.99 3.55

4 1.12 2.78 2.85 2.99 3.55

5 1.12 2.78 2.86 2.99 3.55

6 1.12 2.78 2.85 2.99 3.55

7 1.12 2.78 2.85 2.99 3.55

8 1.12 2.78 2.85 3.00 3.55

9 1.12 2.78 2.85 2.99 3.55

10 1.12 2.78 2.85 2.99 3.55

Average 1.12 2.79 2.86 3.00 3.55

Coefficient of variation 0.005 0.010 0.008 0.013 3.57

Computation time (s) 50 65 87 95 112

Figure 3 shows the convergence rates of different algorithms. The HA is able to converge faster
than the other algorithms. Therefore, the HA has superior performance in terms of response quality as
well as computing time. Replacement of one algorithm’s weaker solutions with good responses from
another algorithm has improved the convergence velocity for the new HA. In fact, although the BA
and PSOA have poor individual performances, the combination of these two algorithms improved the
performance. The results are compared for the same number of function evaluation (5000).
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Figure 3. Convergence curve for different algorithms.

Table 3 shows the performances of the different algorithms in providing irrigation demands over
the 10-year period. The correlation coefficient (r) between the water release values and the required
values in the HA is 0.95, which is more than the other studied evolutionary algorithms. In addition,
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the RMSE value for the HA is 1.2 × 106 m3, whereas this index for the SA, BA, PSOA, and GA is
5.2 × 106 m3, 7.14 × 106 m3, 8.23 × 106 m3 and 10.12 × 106 m3, respectively. Thus, the HA has managed
to better meet the irrigation needs. The MAE index for the HA is less than the other evolutionary
algorithms in Table 3, which shows the better performance of HA in providing for downstream
irrigation needs.

Table 3. The evaluation of different algorithms for irrigation supply based on statistical indices.

Index Equation HA SA BA PSO GA

Correlation coefficient (r) r =

T∑
t=1

(Dt−Dt)(Rt−Rt)√
T∑

t=1
(Dt−Dt)

2 T∑
t=1
(Rt−Rt)

0.95 0.87 0.86 0.85 0.84

Root mean square error (RMSE)
RMSE =

√
T∑

t=1
(Dt−Rt)

2

T
1.2 (106 m3) 5.20 (106 m3) 7.14 (106 m3) 8.23 (106 m3) 10.12 (106 m3)

Mean absolute error (MAE)
MAE =

T∑
t=
|Dt−Rt |

T
3.45 (106 m3) 4.45 (106 m3) 5.57 (106 m3) 6.12 (106 m3) 7.25 (106 m3)

Figure 4 shows the water release volume by the HA for supplying the irrigation demands.
The average demand is 25.12 × 106 m3, and the HA has released 24.48 × 106 m3 for irrigation. The SA,
BA, PSOA, and GA released 23.12 × 106 m3, 22.87 × 106 m3, 20.45 × 106 m3, and 19.88 × 106 m3 of
water from the Aydoghmoush Dam for irrigation. These values indicate that the average water release
during the study period is closer to the average required demand based on the HA.
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Table 4 shows the performances of various studied algorithms based on WRM indices. For example,
the HA, with a reliability index of 92%, would be better able to respond to the downstream irrigation
requirements than the other evolutionary algorithms. The SA has a lower vulnerability index
than the HA. In addition, the HA, with the highest percentage resiliency index (45%) and the
lowest value objective function (1.12), has a better status than the other evolutionary algorithms.
Thus, the best decision can be made by simultaneously considering several indices using a multicriteria
decision-making model. In this case study, the objective function is not considered to be the sole index
for selecting the best algorithm to supply the downstream irrigation demands, and the other indices,
such as resiliency, reliability, and vulnerability, can aid us in selecting the preferred algorithm.
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Table 4. Evaluation of the performances of different algorithms based on different indices in water
resources management.

Algorithm Reliability Index (%) Vulnerability Index (%) Resiliency Index (%) Objective Function

HA 92 12 45 1.12
SA 88 10 43 2.78
BA 87 14 42 2.85

PSO 76 16 40 2.99
GA 69 18 38 3.55

Normalized decision matrix

HA 1 0.83 1 1
SA 0.95 1 0.95 0.40
BA 0.94 0.71 0.93 0.39

PSO 0.82 0.62 0.88 0.37
GA 0.75 0.55 0.84 0.31

Table 5 shows the values of φ1 and φ2 of Equations (30) and (31). This table shows that the values
of φ1 and φ2 for the HA are higher than the other algorithms, which again is an indication of the
superiority of the HA.

Table 5. Values of φ1 and φ2.

Parameter HA SA BA PSO GA

φ1 0.9575 0.825 0.7425 0.6725 0.6125
φ2 0.9541 0.7751 0.7014 0.6312 0.5712

Table 6 shows the value of φ for different algorithms based on different λ values in the 0 to 1
interval. As seen in Table 6, the HA has higher φ values at all λ values than the other algorithms.
According to the results of the pairwise comparison of the studied algorithms (Table 7), the HA,
with 11 successes over the SA, BA, PSOA and GA, is superior to the other evolutionary algorithms for
the following reasons:

(1) The computing time was decreased and the convergence speed was increased.
(2) The objective function was minimized.
(3) The irrigation demands were supplied with released water at an amount close to the average

irrigation demands.
(4) The statistical indices of the RMSE and MAE showed that the new HA can better meet the

irrigation needs.
(5) Based on the multicriteria decision-making model, objective function, and the vulnerability,

resiliency, and reliability indices, the new HA has ranked first among the studied
evolutionary algorithms.

Table 6. Performances of the studied algorithms for different values of λ.

Values φHA φSA φBA φPSO φGA

λ = 0 0.9541 0.7751 0.7014 0.6312 0.5712
λ = 0.10 0.9544 0.7800 0.7055 0.6353 0.5733
λ = 0.20 0.9547 0.7850 0.7096 0.6394 0.5794
λ = 0.30 0.9551 0.7900 0.7137 0.6435 0.5833
λ = 0.40 0.9554 0.7950 0.7178 0.6477 0.5877
λ = 0.50 0.9558 0.8005 0.7219 0.6518 0.5918
λ = 0.60 0.9561 0.8050 0.7226 0.6559 0.5959
λ = 0.70 0.9564 0.8100 0.7301 0.6606 0.6001
λ = 0.80 0.9568 0.8150 0.7345 0.6642 0.6042
λ = 0.90 0.9571 0.8200 0.7383 0.6683 0.6083
λ = 1.00 0.9575 0.82500 0.7425 0.6725 0.6125
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Table 7. Pairwise comparison of the different algorithms based on decision index.

Contender A Contender B Number of Victories for A Number of Victories for B Winner

HA SA 11 0 HA
HA BA 11 0 HA
HA GA 11 0 HA
HA PSOA 11 0 HA
SA BA 11 0 SA
SA PSOA 11 0 SA
SA GA 11 0 SA
BA GA 11 0 BA
BA PSOA 11 0 BA

PSOA GA 11 0 PSOA

However, every algorithm has its own advantages or weaknesses. For example, the new hybrid
algorithm of the BA and PSOA (HA) can improve the convergence speed and avoid being trapped
in the local optima. However, the method also has some limitations. For example, the number of
random parameters is considerable, setting these parameters is difficult, and the algorithm may not
work well for every problem or case study. The uncertainty of data in input instances of optimization
problems are a curse, but a reality [25]. The uncertainty in the inputs is important: even if we had
precisely correct inputs, the model would provide a perfect prediction. However, for anything beyond
an absolutely trivial model, the optimization would still be inaccurate. In this case, there is a level
of input uncertainty, and even a deterministic model would provide output uncertainty. Taking this
uncertainty into account, further predictions and/or decisions could be moderately critical.

The inclusion of uncertainty in a model and how it is treated depends on the model approach,
the analysis, and the decisions being made. (i) Is the model sensitive to input parameters? (ii) Are there
input parameters that are not well known? (iii) Is the nature of the uncertainty aleatory or epistemic?
(iv) What decisions are being made based on the model?

There are few systems in which uncertainties are so limited that they can be neglected, as none of
these four reasons of uncertainty exist. Instead, when modelling a real, complex system to support its
management, an uncertainty assessment is important because interventions are to be “calibrated” for
the quality of predictions. However, if the model has been examined using unseen data, the model
is indirectly assessed and evaluated against the model performance ability regardless of the level
of uncertainty. There are many sources of uncertainty for reservoir optimization, such as inflow,
evaporation, and the climate conditions, which directly affect the operation and hence the released
water volume.

It should be highlighted here that each of the used optimization algorithms has particular
limitations that might negatively influence the generation of the proposed operation rules. For example,
the particle swarm optimization (PSO) is weak in exploration; this leads to its convergence to local
optima. This is because there is no operator that can stimulate abrupt changes that can enhance the
exploration in the set of potential solutions; consequently, the solutions are easily trapped in local
minima. Other major factors to the convergence to local optima are due to heavily reliance on dispersal
of the initial swarm and the connection among the particle members. Since the members of particles
are strongly bonded, the chances for them to escape from local optima are low, if the majority of them
are trapped in a local optimum.

Secondly, the GA is sensitive to the initial population used. A wide diversity of feasible solutions
is what one wants. Stochastic algorithms, in general, can have difficulty obeying equality constraints.
Different sets of results are obtained through numerous simulation processes, even when the same
input data are used. This means that one needs to find a statistically convergent solution with many
simulations. In GA, the population has no memory of its previous state; this results in an independent
event for each generation.

The limitation for the standard BA seems to be its relatively poor exploration ability despite
its good performance in exploitation. This is because BA has no crossover operation (unlike GA);
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consequently, BA maintains the members of the whole population through the search procedure.
There is a need to improve the control strategy to switch between exploration and exploitation at the
right moment.

Finally, the limitation of the shark algorithm is that the search performance depends on the
randomness in the initial population of solutions. Consequently, the searching process may become
trapped in local optima. This drawback is also possibly due to gradient behavior, which is the
movement of solutions along the objective function, even though it speeds up the convergence rate.
Another probable disadvantage of gradient-based methods is that they are weak in handling problems
such as objective functions with noise, inaccurate gradients, and an irregular shape of problem layout.
In addition, gradient-based methods require tremendous computational work; for example, each time
the code is altered, the adjoint computations may need to be revised.

5. Conclusions

In the present study, a new HA combining the BA and PSOA is introduced for optimal operation
of the Aydoghmoush Dam Reservoir to meet downstream irrigation demands and reduce irrigation
deficiencies. The results showed that the HA, with an objective function value of 1.12, demonstrated
a more successful performance in the optimization process with a lower computational time and
higher convergence rate than the SA, BA, PSOA, and GA. The 10-year average irrigation demand was
25.12 × 106 m3, and the average HA water release volume was 24.48 × 106 m3. Other evolutionary
algorithms resulted in higher water release volumes. Furthermore, a multicriteria decision-making
model based on reliability, vulnerability, and resiliency indices was used to select the best algorithm.
This result again indicated the superiority of the HA. In future studies, this new HA can be tested under
climate change conditions and different reservoir operations. In fact, the water demand data and the
reservoir inflow for this study are characterized by its relative high variability in nature. This variability
is seen within two different scales: monthly scale and annual (yearly) scale. The successfulness
of the proposed model in detecting such variability could be strong evidence that the model has
potential to capture the possible uncertainty in these variables in the future under different climate
conditions and changes. The results indicated that the method could be used for complex problems,
such as multireservoir and multipurpose systems with consideration of uncertainty of different
parameters, such as inflow, evaporation, and others. In addition, for downstream demand from
different stakeholders, the generated operation rules could be adapted to allocate the released water
using game theory. Therefore, the proposed optimization algorithm and the allocation methods
could be integrated and could provide the decision-makers with an effective tool to achieve better
management and operation for dam and reservoir water systems.
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