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Abstract—Health informatics in glycemic control is visibly a
promising research area. However, this applied science requires
more intelligent mechanisms by which user requirements for
more accurate prediction can be fulfilled. Such mechanisms must
provide very flexible and user friendly procedures to enable
complicated decision support functions. This article presents the
linking process of per-patient demographic and admission to
intensive care unit data with their glycemic control performance
using probabilistic causal Bayesian Network models (BNs). Data
from two glycemic control protocols are exploited to test the
feasibility. The identified steps crucial in building a dependable
model are variable selection, state discretization, and structure
learning. Different BNs can be generated with more than 83.73%
overall precision rate and 93.4% overall calibration index with the
combination of these steps. A network with a 95.36% precision
was obtained with an equal distance discretization algorithm
dataset and Maximum Weight Tree Spanning unsupervised
structure learning. The study was the first testing phase in which
the results generated by selected data and process is proposed as
a benchmark. The resulting network is centred on ’Hypertension’
status to predict BG mean and number of measurements as a
result of the prediction interest. This co-morbidity is proposed
to be considered systematically in the modelling of any glycemic
control to optimize its function in the intensive care units.

Index Terms—Glycemic Control, Intensive Care Units,
Bayesian Network, Discretization Technique, Performance Pre-
diction

I. INTRODUCTION

Since the birth of intensive care medicine, researchers tend
to study the cause and effect result on patients with similar
signs and symptoms while trying to integrate individual char-
acteristics such as age, comorbidities condition and individual
variations, in response to treatment. As the health informat-
ics and awareness of improved intensive care medicine has
progressed, an increasingly personalized medicinal approach
is entering ICUs. However, it is only beginning in glycemic
control (GC) and the judgements are often left to expert
opinion.

In glycemic control and treatment strategies, as across all
other Intensive Care Unit (ICU) therapies, more and more
control models are being computerized [1]. To obtain more
efficient and safer control, an increasing number of ICUs
are starting to use validated and computerised algorithms
with patient-specific physiological models, such as EndoTool,
LOGIC and STAR [2]–[5]. These GCs are based on im-
proved clinical guidelines, but none systematically consider
per-patient demographic background and admission condi-
tion, such as comorbidities. Furthermore, despite the growing
number of computerized patient-specific control, a majority
of hospitals around the world, especially in less developed
countries still use manual sliding scales based on generalised
rules to control glycemic, such in Malaysian ICUs [6].

In any case, all these ICU data need to be exploited to
make the best decisions for critically ill patients. These data
must be more than written records and documentation tool.
Instead of regular measurement, some of these data are one
time information and don’t have any pattern to signal patient
variability, nevertheless they may add value that can support
and enhance clinical decision support.

Bayesian Network [7], [8], a probabilistical and graphical
model often used to model uncertainty and causality, with
applications ranging from medical diagnosis [9], detection
[10], prediction [11] to decision-making systems [12], offer
a potential solution. Due to their directed graphical structure,
Bayesian networks (BNs) are intuitively interpretable, thus
assisting and expediting human decision support in ways
generalized machine learning cannot. In essence, BN struc-
ture helps ’explain’ its outputs. BN provides an efficient
factorization of the joint probability distribution over a set
of random variables. Patient-specific data that often contains
a combination of discrete and continuous variables, can be
deployed in structured learning and inference to perform diag-
nosis, prognosis or simply find the causal relationship between
variables. Continuous variables are often discretized, and the
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choice of discretization technique has striking impact on the
prediction precision, computation speed, and interpretability
of the resulting networks.

The objective of this paper is to study the integration
of demographic and admission data, which are a one off
input value, with glycemic control performance variables using
BN and to interpret the possible relationship between these
variables. In this view, this paper focuses on the choices of
discretization techniques towards all continuous variables and
the structured learning steps.

II. METHODS

A. Glycemic Control data

The study was conducted on retrospective data from 368
Malaysian critically ill patients treated under sliding-scale
intensive insulin infusion approach (210 patients) and comput-
erized STAR glycemic control (158 patients) protocols from
the Hospital Tengku Ampuan Afzan (HTAA) and International
Islamic university Malaysia Medical Centre (IIUMMC) ICUs
respectively.

1) HTAA Intensive Sliding Scale Approach: In this pro-
tocol, medical staff perform treatment based on rules. The
adopted rules chart in HTAA can be referred to in Fig. 1.
Basically, the BG target range is between 5.1 - 8.0 mmol/L.
BG monitoring and treatment is performed hourly once insulin
is started to be administered. When there is no requirement
of insulin rate change for two consecutive hours, BG is then
measured 2-hourly. Frequency of monitoring is reduced once
the patient is considered stable.

2) IIUMMC STAR control: STAR (Stochastic TARgeted) is
a glycemic control protocol that is based on insulin sensitivity
to automatedly characterize and forecast changes in per-patient
metabolic state and designed to be used in real-time bedside
care. Its prediction is based on a stochastic model over the 1-3
hours subsequent potential variation in patient-specific insulin
sensitivity [13]–[15]. STAR has shown promising results, and
is the default treatment in Christchurch, New Zealand, and
Gyula, Hungary hospitals ICU [16]. Since December 2016, it
has been implemented in the IIUMMC ICU in Malaysia as
part of a Malaysian pilot trial [17].

The adaptability of STAR includes BG level target range,
measurement frequency, patient safety within a predefined
desired hypoglycemia risk and local nutrition practices [5],
[18]. The data from this ICU comes from two BG target range
of 4.4 - 8.0 mmol/L and 6.0 - 10.0 mmol/L.

B. Bayesian Network

A Bayesian Network (BN) models a variable as node and
the potential causal relationship between two variables as a
directed arc. These create the BN structure, while to complete
it, a conditional probability table (CPT) is assembled to each
node to represent the probabilities of each values of a node,
given the conditions of its parents. The structure along with
the CPT can be built from human knowledge, machine learned
from training datasets, or a combination of both.

In this study, the structure is proposed to be learned with an
80:20 ratio of learning and testing over random data sampling.
The structure learning and testing are performed multiple times
between different discretizations of continuous variables algo-
rithms, as well as the unsupervised structure learning methods.
While BNs can be trained from continuous variables directly,
it is common to discretize the variables into states to prepare
a dataset that enables the Bayesian network structure learning.
Purpose is to minimize computation speed by avoiding having
to consider variable interactions complexities. In the discrete
states case and provided the probability of an event B does
not equal 0, Bayes theorem is used to relate the conditional
and marginal probabilities of two events A and B (Equation
1) :

P (A | B) =
P (B | A)P (A)

P (B)
(1)

• P (A | B is the conditional probability of A, given B. It
is also called the posterior probability.

• P (B | A) is the conditional probability of B given A. It
is also called the likelihood.

• P (B) is the prior or marginal probability of B, and acts
as a normalizing constant.

Data discretization algorithms that were used in this study
includes the K-Means, Multivariate, GenOpt, Equal distance,
normalized equal distance and Equal frequency. For each
of the algorithms, discretization brings out different variable
states that translate into multiple datasets. These datasets are
then feed to the structure learning step.

Structure learning step was performed using unsupervised
algorithms based on score-based learning algorithms. As op-
posed to the constraint-based algorithms that use independence
tests to add or remove arcs between nodes, the Minimum
Description Length score [19] or Pearson Correlation score
were deployed to measure the quality of network candidates
corresponding to the available datasets.

For the purpose of this initial study, discretization for each
variable was limited between 2 or 3 states only. Performance
evaluations were done using multi-target analysis system with
the basis to consider each node in the network as a target node,
and final performance is based on the overall performance.
For each node as a target, the quantitative performance of
all candidates were evaluated using the test dataset with the
following two metrics: (i) overall precision; and (ii) overall
calibration index.

III. RESULTS AND DISCUSSION

The process began with the identification of variables to be
used in the modelling. Common variables that were available
from 2 ICUs provided data, using two different glycemic
controls (GC) were used. 10 variables were extracted, which
included age, gender, height, weight, Diabetes Mellitus and
hypertension status upon admission to ICU, the total hours
under respective GC treatment, the number of measurements
involved, the initial BG level, and the mean BG under control.
Amongst these variables, only gender, Diabetes Mellitus and
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Fig. 1. HTAA Sliding scale protocol chart.

hyprtension status are discrete and binary. All others need to
be discretized before being used in the model. Results are
presented and discussed based on the final networks with best
prediction score first and then the discretization algorithm that
produce them.

The comparative performance between networks using dif-
ferent datasets are presented in Table I. Based on this results,
BNs built from Equal Distance and Normalized Equal Dis-
tance algorithm datasets score the overall highest precision
(95.93%) and with the highest calibration index (95.36%).
However, if comparisons are only between the discretization
by 3 algorithm datasets, K-Mean algorithm displays the best
performance (87.46% precision; 96.67% calibration index).

BNs from equal distance by 2 and K-Means by 3 are
presented in Figures 2 - 3. Both networks were generated using
the unsupervised Maximum Weight Spanning Tree (MWST)
approach that uses Pearson correlation coefficients for every
pair of nodes. These coefficients are then used as weights to
build a network maximizing the total sum of their squared
values. MWST using Pearson Correlation, and not using MDL
score as an objective function is the only technique consis-
tently providing a final network with all nodes connected to

each other. This result is explained by the fact the MDL score
considers the correlation plus the structural complexity of the
network, thus establishing ”automatic significance thresholds”.
However, Pearson’s Correlation is only based on correlation,
without any significance threshold. Thus, it always returns
networks in which all the nodes are connected, even in the
case of very weak relationships, which may not be accurate
or desired.

Overall, in terms of quantitative performance, overall preci-
sion and calibration index results are not remarkably different
between the discretized datasets. Furthermore, the Equal Dis-
tance and Normalized Equal Distance performed exactly the
same. Equal distance algorithms approaches directly compute
the equal distances based on the range of the variable, while
the normalized equal distance first uses a smoothing algorithm
to ”clean the outliers” and then computes the equal distances.
Interestingly, for these data, the normal and normalized algo-
rithms resulted in exactly the same discretization, indicating
there were no outliers in the data.

Qualitatively, a closer look into the two networks reveals
one common point, which is the proximity of hypertension
status control’s to total hours, number of measurements and
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TABLE I
SUMMARY OF PERFORMANCE RESULTS COMPARING THE DIFFERENT NETWORKS BUILT UNDER DIFFERENT DATASET FROM MULTIPLE DISCRETIZATION

ALGORITHMS

Precision

Discretization
by 2

Equal
distance

K-
Mean

Multi-
variate

Normalized
equal
distance

GenOpt Discretization
by 3

Equal
distance

K-
Mean

Multi-
variate

Normalized
equal
distance

GenOpt

Mean 82.74% 80.93% 76.49% 82.74% 80.25% Mean 69.50% 70.72% 69.90% 69.50% 71.30%
Standard
Deviation 13.43% 5.79% 7.02% 13.43% 6.92% Standard

Deviation 13.00% 11.88% 9.47% 13.00% 11.65%

Minimum 61.69% 70.41% 64.41% 61.69% 67.69% Minimum 46.44% 46.44% 55.44% 46.44% 47.46%
Maximum 95.93% 90.85% 89.15% 95.93% 91.86% Maximum 84.41% 87.46% 83.73% 84.41% 83.73%
Calibration Index

Discretization
by 2

Equal
distance

K-
Mean

Multi-
variate

Normalized
equal
distance

GenOpt Discretization
by 3

Equal
distance

K-
Mean

Multi-
variate

Normalized
equal
distance

GenOpt

Mean 81.56% 78.82% 78.60% 81.56% 84.06% Mean 88.80% 89.39% 84.91% 88.80% 87.06%
Standard
Deviation 11.39% 8.15% 14.64% 11.39% 68.24% Standard

Deviation 5.20% 6.39% 6.68% 5.20% 5.56%

Minimum 55.73% 67.51% 43.90% 55.73% 69.48% Minimum 76.51% 76.62% 70.74% 76.51% 77.69%
Maximum 95.36% 93.40% 95.36% 95.36% 95.36% Maximum 96.58% 96.67% 95.36% 96.58% 95.50%

Fig. 2. The network based on equal, all 2 distance discretization.

BG mean if compared to Diabetes Mellitus status. This result
may signal priotizing investigation and potential incorporation
of per-patient hypertension status in modelling the overall
approach for efficient glucose control, before Diabetes Mel-
litus status. Second, the arrows in generated BNs need to be
approved by medical opinions to adjust the potential causality
because with MWST structure learning based on Pearson
correlation, the arrows only signify the strength of correlation
between 2 nodes, and not necessarily the causal relationship
between them. Hence, clinical model verification is necessary.

The node bars (Figures 4 - 5) display the normalized
conditional probabilities to have a maximum value of 100 for
both networks. From the bar, the states for each node can
be extracted. However, the maximum and minimum values
are not given in the generated figures, but can be referred
to in Table II. Based on this discretization, the results imply

Fig. 3. The network based on equal, all 3 distance discretization with K-
Means tehcnique.

difference in BN structures comes directly from the difference
in discretized states of each node. This result is important as
the choice of states can impact the resulting structure, which
we hope can translate into increased interpretability for clinical
decision support, which is critical for clinical uptake [20].

IV. CONCLUSION

The paper presents the results from linking the data coming
from patients background and their glycemic control treatment
in ICU using Bayesian Network. It focuses on the structural
machine learned process which we think may gain some
relevance for the future research and practical applications
of BN in the ICUs. The performance of BN is compared
within its building algorithms such as the discretization and
the structure learning process. Experiments with real retro-
spective data revealed that many algorithms to support the
building of Bayesian Network from these type of data have
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Fig. 4. The initial probability distribution for equal frequency, discretization
by 2.

Fig. 5. The initial probability distribution for k-means, discretization by 3.

TABLE II
THE MINIMUM AND MAXIMUM VALUES OF THE VARIABLES COMING FROM

THE DATASET

Nodes 10 Variables Minimum Maximum
Age Continuous 18.0 91.0
Gender Discrete Aggregates: F or M
Height Continuous 109.0 186.0
Weight Continuous 36.6 170.0
Diebetes Mellitus Discrete Aggregates: 0 (No) or 1 (Yes)
Hypertension Discrete Aggregates: 0 (No) or 1 (Yes)
Total hours Continuous 2.0 213.0
Num. measurements Continuous 3.0 162.0
Initial BG (mmol/L): Continuous 4.8 39.0
BG mean (geometric)
(mmol/L): Continuous 5.55 17.53

statistical validity to provide an excellent prediction of control
performance.
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