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1  |   INTRODUCTION

As focusing on the current users of a solar photovoltaic (PV) 
energy, there is an unclear description and power profile for 
users in all PV sectors. There is a general need for all those PV 
users to get a better knowledge about their PV systems so as to 
gain the best efficient energy as compared with cost. In con-
trast, PV power is highly related to the weather conditions such 

as; temperature and sun irradiance, which complicates the mea-
surement optimizations, therefore, a modeling for such systems 
is an essential need.1 A PV cell has a nonlinear current-voltage 
(I-V) characteristic that can be modeled using a current source, 
one or more diodes, and resistors. Single-diode and double-
diode models are widely used to simulate PV characteristics. 
The single-diode model emulates the PV characteristics fairly 
and accurately.2 The manufacturer provides information for the 

Received: 10 May 2018  |  Revised: 22 November 2018  |  Accepted: 22 November 2018

DOI: 10.1002/ese3.264

R E S E A R C H  A R T I C L E

Silicon PV module fitting equations based on experimental 
measurements

Ahmad H. Sabry1   |  Wan Z. W. Hasan2  |  Yasameen H. Sabri3  |   
Mohd Zainal Abidin Ab-Kadir1,4

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original 
work is properly cited.
© 2018 The Authors. Energy Science & Engineering published by the Society of Chemical Industry and John Wiley & Sons Ltd.

1Institute of Power Engineering 
(IPE), College of Engineering, Universiti 
Tenaga Nasional (UNITEN), Kajang, 
Malaysia
2Department of Electrical 
and Electronics, Faculty of 
Engineering, University Putra Malaysia 
(UPM), Serdang, Malaysia
3Ministry of Electricity, Baghdad, Iraq
4Centre for Electromagnetic and Lightning 
Protection Research (CELP), University 
Putra Malaysia, Serdang, Malaysia

Correspondence
Ahmad H. Sabry, Institute of Power 
Engineering (IPE), College of Engineering, 
Universiti Tenaga Nasional (UNITEN), 
Kajang, Malaysia.
Email: ahs4771384@gmail.com
and
Wan Z. W. Hasan, Department of Electrical 
and Electronics, Faculty of Engineering, 
University Putra Malaysia (UPM), Serdang, 
Malaysia.
Email: wanzuha@upm.edu.my

Funding information
University Putra Malaysia, Malaysia, Grant/
Award Number: Vot 9515302; University 
Tenaga National (UNITEN)

Abstract
Solar photovoltaic (PV) characteristic curves (P-V and I-V) offer the information 
required to configure the PV system to operate as near to its optimal performance as 
possible. Measurement-based modeling can provide an accurate description for this 
purpose. This work analyzes the PV module performance and develops a mathemati-
cal formula under particular weather conditions to accurately express these curves 
based on a custom neural network (CNN). The study initially presents several stand-
ard mathematical model equations, such as polynomial, exponential, and Gaussian 
models to fit the PV module measurements. The model selection is subjected to the 
minimum value of an evaluation parameter. To simplify the solution of the symbolic 
equations for the CNN network, two neurons in the hidden layer with nonlinear acti-
vation function and linear for the output layer were selected. The results show the 
effectiveness of the proposed CNN model equations over other standard fitting mod-
els according to the root mean squared error (RMSE) evaluation. This method prom-
ises further improved results with multi-input parameter modeling.
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PV electrical characteristics by specifying certain points on 
its I-V characteristics called remarkable points. The relation-
ship between the voltage and current of a PV cell or module 
is summarized by the main electrical characteristics produced 
on typical solar cell P-V and I-V curves. The irradiance, which 
represents the intensity of the solar insolation incident on the 
module, controls the current (I), while the temperature rise 
reduces the module voltage (V).

A solar module produces direct current (DC), and the 
product of current and voltage provides the power (P). 
Therefore, we can create P-V curves representing the power 
versus the voltage for a given PV module. Since the relation-
ship between the I-V and P-V characteristics is nonlinear for 
a PV system, analytical methods have been considered as 
a simple solution to model the behavior of a PV module.3 
Mathematical modeling of a PV is described by the nonlin-
ear relationship in the current-voltage (I–V) curve.4 Many 
researchers have proposed several models to describe the be-
havior of a PV cell and to improve the modeling and param-
eters estimation, such as those using the Lambert W function 
and numerically using the Newton-Raphson method.5,6 An 
artificial neural network (ANN) together with the Lambert W 
function were employed to determine the I-V and P-V curves 
of silicon and plastic solar cells and modules.7 Neural net-
work adopts the principle of the human brain as a learning 
method to implement the functioning conditions between 
input/output, whether the system is a linear or nonlinear with 
a property of minimal computing processes.8 A comparative 
study in 9 concludes that ANN-based models dominate and 
achieve better results than others such as; one-diode, multiple 
linear regression, polynomial regression, and analytical mod-
els. The main advantages of ANN-based approaches are that 
it does not require more complicated calculations or parame-
ters, unlike other models. Under various weather conditions, 
the accuracy of PV power prediction has been improved by 
using the response characteristics of the PV array, and con-
sequently, by measurements driven model power prediction 
methods.10 Efforts in11 present seasonal meteorological fea-
tures with historical data corresponding to different seasons 
by using optimized multi-layer back propagation neural net-
work. The produced power profile of a Silicon-crystalline PV 
module has been estimated with reasonable accuracy in.9,12-15 
The objective of the model estimation was to improve the pre-
diction performance and evaluation using differences based 
on measures of accuracy to determine the root mean squared 
error (RMSE) or mean square error (MSE).16 A PV module is 
generally rated under standard test conditions (STC) with the 
solar irradiance (G) of 1000 W/m2, cell temperature (T) of 
25°C, and AM 1.5 solar spectrum by the manufacturers. The 
parameters required for the input of the PV modules rely on 
the meteorological conditions of the area. The climatic con-
ditions are unpredictable due to the random nature of their 
occurrence.

The above brief review concluded that the modeling of PV 
cell or array that is based on artificial intelligence approaches 
such as; ANN, Neuro-Fuzzy, etc., was applied in different 
conditions. Although these techniques have verified that the 
ANN is the most useful than classical methods, especially in 
terms of accuracy and simplicity, they did not present math-
ematical equations describing the power output or even the 
P-V/I-V characteristics. From this context, it is not clear, if 
the current modelings are scalable for providing more in-
formation that can assist PV power engineers to identify the 
harvested energy. The challenge of accurate modeling for the 
nonlinearity I-V characteristics of a solar cell can be solved 
through their matching with the experimental measurements. 
Therefore, offering efficient technique is essential to deter-
mine the model parameters precisely.

The rest of the paper is organized as follows; Section 2, 
briefly presents the main objective of the proposed modeling and 
the work contributions. This section includes two subsections: (a) 
the PV module manufacturer specifications and the experimental 
measurements, (b) the training algorithm of the proposed mathe-
matical modeling and the approach topology. Section 3 discusses 
the obtained results and contains the proposed modeling results 
and a comparative study, which includes a brief review and com-
parison for the performance of the proposed CNN models with 
other standard data-fitting models, such as polynomial regres-
sion, exponential, Gaussian regression, and single-diode models. 
Finally, Section 4 concludes the research findings.

2  |   PROPOSED MODELING

The main objective of this article was to develop an accurate 
and simple custom neural network (CNN) to extract math-
ematical representations of the P-V/I-V relationships for a 
PV module. The work also presents a comparison between 
different models to assess the performance of the proposed 
models. The comparison analyses help to choose the appro-
priate PV module in the design considerations of stand-alone 
PV and grid-connected systems.

The key contributions of this work are:

•	 Synthesizing the ANN architecture for a new topology 
to provide formulas for P-V and I-V relationship via a 
solvable set of nonlinear equations, which is achieved by 
acquiring experimental measurements at, appropriate sam-
pling rate, data normalization, minimizing the hidden-layer 
neurons that have nonlinear activation functions (sigmoid), 
and output the result through a single-neuron with a linear 
function (pure-line).

•	 Estimating P-V/I-V characteristics and formulating the 
measured data with mathematical equations.

•	 Presenting a developed approach to analyze and model the 
PV module and its behavior.
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2.1  |  Module database
The system has a PV module, PHOTOWATT Silicon-
Polycrystalline,17 the specifications are given in Table 1, 
while the I-V curves are shown in Figure 1.

All the analyses are performed using MATLAB software 
package. The experimental data measurement of P-V/I-V was 
conducted for a silicon solar module (polycrystalline) at an 
irradiance of 370 W/m2 and a temperature of 28°C.

2.2  |  Development of CNN-based 
mathematical model
The proposed CNN block diagram employed to estimate the 
P-V and I-V of the PV module is depicted in Figure. 2. The 
CNN has three layers, an input layer, a single hidden layer, 
and output layer. The input layer represented by a vector (V) 
of load voltage measurements in the first and second cases, 
while it has seven inputs; [G, T, Voc, Isc, IMP, VMP, V]T in the 
third case. The output layer has only single output neuron 
which is the current (I) in the first case or the power (P) pro-
duced by the PV module in the second and third cases.

The objective here was to find the input-output relation 
based on the experimental measurements.18,19 Moreover, to 
find whether an equation can be helpful to predict the power 
generated based on the seven inputs that previously men-
tioned. This equation can be formulated as follows:

where fest denotes the estimation/approximation function. 
The input-output data are subjected to the normalization pro-
cess in order to get the more efficient network in terms of 
complexity and execution time, the general normalized data 
can be obtained from the following expression:

where xnorm denotes the normalized values of data x, where 
xmin ≤ x ≤ xmax. The same training algorithm has been imple-
mented over the three proposed cases which are described in 
Figure 3.

Input-output data set is used to train the network over the 
training stage. After implementation of each input vector, the 
algorithm calculates the network output (I in case 1 or P in 
cases 2 and 3), that is consequently compared with the re-
quired output to create the Mean Square Error (MSE), this 
with a performance function is used for training the proposed 
CNN. The updated error is substituted in the Levenberg-
Marquardt learning (learnLM) as an optimization algorithm 
to update the network weights and biases. Then, after suffi-
cient iterations, MSE between the CNN and the target outputs 
stabilizes to a minimum quantity.

The network architecture of (1 × k for cases 1 and 2, and 
7 × k for case 3) input matrix, two hidden neurons, and a 
single output neuron has been used to model the PV-module 
characteristics’ curves, where k is the number of measure-
ments. At each iteration, each input vector (1 × 1 case 1 and 
2, while 7 × 1 for case 3) is multiplied by their associated 
weights and passes through a nonlinear activation function 
(sigmoidal function) at the hidden layer. Next, the outcomes 
of the hidden neurons are also multiplied by their associated 
weights and processed with a pure-line activation function 
this time to simplify the solution for obtaining the algebraic 
equations. To summarize the architecture understanding, one 
case network is presented which is shown in Figure 4.

In general, since the output is configured as a linear trans-
fer function, the formula for all cases is given by Equation 5, 
while the formula for each hidden-layer neuron is given by 
Equation 6:

Since the nonlinear activation function has been selected 
for the hidden layer, which is given by Equation 6, the out-
puts of these neurons (aj) are given by Equation 7 for cases 1 
and 2, and Equation 8 for case 3, as follows:

where n1
j
 denotes the hidden-layer summation formula, the 

upper subscript refers to the first layer which is the hidden 
one, and j = 1,2, the number of hidden neurons. IW is the 

(1)I = fest(V) case 1

(2)P= fest(V) case 2

(3)P= fest(G,T ,Voc,Isc,IMP,VMP,V) case3

(4)xnorm =
(x−xmin)

(xmax−xmin)

(5)Iest or Pest =n2
1
=

2
∑

j=1

(ajLW1,j+b2)

(6)aj = f1

(

n1
j

)

= logsig
(

n1
j

)

=
1

1+e
− n1

j

(7)aj =
1

1+e−(V∗IW(j,1) + b1)
case 1 and 2

(8)
aj =

1

1+e−(Voc*IW(j,1)+Isc*IW(j,2)+VMP*IW(j,3)+IMP*IW(j,4)+V*IW(j,5)+G*IW(j,6)+T∗IW(j,7)+b1)

T A B L E   1   Specifications of the PV module from the datasheet 
PHOTOWATT PV panel (Silicon Polycrystalline)

Specifications Value

Maximum power PMAX W 55

Open circuit voltage Voc V 21.7

Short circuit current Isc A 3.4

Voltage, max power VMP V 17.3

Current, max power IMP A 3.2

Maximum system voltage V 600VDC

Temperature coefficient for 
voltage (β)

mV/°C −79

Temperature coefficient for 
current (ɑ)

mA/°C +0.95
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input weight matrix, while b1 and b2 are the bias vector for 
the hidden and output layer neurons, respectively.

3  |   RESULTS AND DISCUSSION

Experimental measurements have been implemented to find 
a set of data points that represent the current-voltage dataset 
(Ik, Vk) and the pairs of power-voltage data (Pk, Vk), where 
the index k represents the number of sampling data. In addi-
tion, to inspect the ability of the proposed CNN for modeling 
the profile of the PV-generated power precisely, the measure-
ments along for about 8 days, cloudy and sunny, have also 
been conducted.

In order to present the conditions that affected the PV-
module performance, multimeters are used to measure Voc, 
Isc, IMP, and VMP generated by the PV module. A variable 
resistor (0-120)Ω was considered as a load which implies the 
variation of the current and voltage. A temperature sensor 
to follow the temperature variation of the PV surface is also 
employed. Besides, a luxmeter (ISM 410) is used to follow 
the illumination. Figure 5 illustrates the PV schematic con-
nections and experimental setup used to measure the charac-
teristics I = f (V).

3.1  |  CNN model results
For case 1, which is similar to case 2, the correlation coef-
ficient between the network and the target data is shown in 

Figure 6 (A), while (B) shows the comparison between the 
proposed CNN model and the measured I-V profile. The 
relationship between the output and the target is evaluated 
by R-value. If there was an exact linear relationship between 
outputs and targets, R would be 1. Thus, if R is close to zero, 
this indicates that there is a nonlinear relationship between 
the outputs and the targets.20 We have selected two related 
research articles that may benefit from the achievements of 
this work 21,22 because they considered the solar PV array as 
the only power supply to feed electricity to a high-efficiency 
home system within a DC environment. This indicates that 
the training data have a great fitting result, and the proposed 
CNN fitting procedure for the current-voltage measurements 
is effective for this application.

In order to inspect the ability of the proposed CNN to 
model the pattern of the PV generated power precisely, 
about 8 days, cloudy and sunny, have been addressed, that 
is not been implemented during the training process of the 
proposed CNN. MSE has a great performance for the CNN 
model as shown in Figure 6. It is observed that the MSE 
over the training process approaches to 10−4. This result 
indicates that the CNN weights are well updated and the 
approach could create output data of a reasonable accuracy 
for both sunny and cloudy days. According to Figure 7A, 
the best validation performance is 0.000133 at epoch 31, 
and the performance of the network was measured with 
R-square = 0.99972, as seen in Figure 7B. The results ob-
tained a better goodness-of-fit than other relative models, 
which would be discussed later.

F I G U R E   1   PHOTOWATT PV panel manufacturer I-V curves
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A superposition of curves is clear between the mea-
surements and modeled/estimated patterns for the pro-
duced power of the PV module as shown in Figure 8. It is 
obvious that the measured values of the produced power 
are very close to the modeled/estimated one. A relatively 
matching of curves is clear between the measurements and 
modeled/estimated patterns for the produced power of the 
PV module.

By substituting the network weights, the equation of the 
output solar power (P) can be calculated as:

3.2  |  Comparative analysis

In this section, a brief review and comparison of the per-
formance for the proposed CNN models with other various 
models such as polynomial regression, exponential, Gaussian 
regression, and single-diode models are discussed.

3.2.1  |  Modeling with fitting equations
Modeling and analysis using the I-V and P-V curve fitting 
method were performed in Specific LabVIEW and MATLAB 
software applications.23 Data-driven modeling techniques 
can create models that are used when there is no sufficient 
information about a system. Therefore, these techniques can 
provide a model with a reasonable accuracy by choosing a 

(9)
P=1.25−

0.79682
(

1.008*e(0.0377IMP)*e(0.045Isc)*e(0.6377Voc)*e(0.4179*V)*e((0.496*VMP))+ 1.0

)−

1.42773
(

75574.82*e(0.087IMP)*e(0.1123Isc)*e(0.6377Voc)*e(−0.885V)e(0.987G)*e(−0.456T)+ 1.0

)

F I G U R E   2   The concept of the proposed CNN
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suitable modeling technique. Curve fitting is a tool used to 
explore the relationships between data sets. This work inves-
tigates several models, such as polynomial, exponential, and 

Gaussian, to obtain the equivalent function approximation for 
each of the current (I) as a function of a voltage (V), I = f (V), 
and the module power (P) as a function of its voltage P = f (V).

F I G U R E   3   Training algorithm diagram of the proposed CNN modeling

F I G U R E   4   Proposed CNN 
architecture
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F I G U R E   5   Photovoltaic schematic connection and experimental setup

F I G U R E   6   A, The correlation coefficient between the network and the target data. B, Comparison between the proposed CNN model and the 
measured I-V profile

F I G U R E   7   A, The training performance for the CNN with two neurons. B, Training state for the CNN model
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Table 2 provides a list of the common fitting equations 
used in MATLAB’s built-in functions.24 Some of the 
listed equations may fit one data set but not the others, 
and the fitting accuracy depends on the selection of the 
equation order. There is no dominant fitting approach for 
the types of observations in this paper, even for physical 
applications. Therefore, it is essential to consider the per-
formance of several statistical methods to fit particular 
I-V and P-V curves to select the best one for a given mea-
sured data set.

Where β1, β2 … β9 denote the coefficients of the polyno-
mial model, while ɑ, �, ρ, b, d, γ denote the coefficients of 
the exponential and Gaussian models. In this research, all the 
experimental measurements of the data sets are marked with 
red circles in each graph.

As a case 1, the (Ik, Vk) experimental data points  
have been compared with the polynomial regression of 
degree 2-8, as shown in Figure 9A, the exponential of de-
gree 1-2, and Gaussian of degree 2 models as depicted in 
Figure 9B.

As a case 2, the modeling of the (Pk, Vk) experimental 
data points with the polynomials of degrees 2-8 is shown in 
Figure 10A, exponential of degrees 1 and 2, and Gaussian of 
degree 2 models, as shown in Figure 10B.

To determine whether those models have a good approx-
imation for the measured data, the goodness-of-fit statis-
tics, such as the root mean square error (RMSE), the sum 
of squares due to error (SSE), a total sum of squares (SST), 
and R-square were used. The above all are calculated as 
follows:

The index v indicates the number of independent portions 
of information involving the n data points required to cal-
culate the sum of squares, f (xk) is a function of the input 
measured data (xk, yk) of the fitted model, k represents the 
number of sampling data measurements, and Yk is an element 
of the data set (xk, yk). Similar to the SSE, values of the MSE 
closer to zero indicate a better fit. The best fitting is obtained 
for the (Ik, Vk), case 1 data and the power-voltage (Pk, Vk) case 
2 data were based on the values of the RMSE. Therefore, for 
the experimental (Ik, Vk) data, case 1, the best fit curves are 
represented by the polynomial 8th degree regression and the 
exponential 2nd degree regression, as shown in Figure 11A 
and B, respectively.

For the (Pk, Vk) experimental data, case 2, the polynomial 
model of degree 6 and the Gaussian model of degree 2 were 
satisfied the minimum RMSE and the comparison can be 
shown in Figure 12.

The above evaluation for the addressed models or fitting 
equations shows that their application is effective and feasi-
ble to provide P-V and I-V mathematical models. Therefore, 

(10)

SSE=
n
∑

k

( f
�

xk

�

−yk)2

MSE= SSE∕v

MSE=
1

v

n
∑

k

( f
�

xk

�

−yk)2

RMSE =
√

(MSE) ,

SST=
n
∑

k

( f
�

xk

�

−
1

n

n
∑

k

f (xk))2

R−square= 1− (SSE/SST)

F I G U R E   8   Comparison between measured data and modeled/estimated (CNN) of the produced power profiles of the used PV module for 
about 8 days



140  |      SABRY et al.

the satisfied fitting equations are the polynomial regression, 
exponential, and Gaussian regression models. Therefore, we 
can briefly describe the models that satisfy reasonable fitting 
evaluation as follows:

•	 Case 1, I-V curve, I = f (V): 8th degree of Polynomial 
model Equation 11, or the 2nd order Exponential model, 
Equation 12, as follows:

(11)I (V)= �1V8+ �2V7+… +�8V + �9V0

(12)I (V)= �.e(b*V) +� .e( d*V)

T A B L E   2   List of models for general mathematical equations

Model names Degree Equations

Polynomial model 1 Y = β1·x + β2

2 Y = β1·x
2 + β2·x + β3

3 Y = β1·x
3 + β2·x

2 + β3·x + β4

8 Y = β1·x
8 + β2·x

7 + … + β9

Exponential model 1 Y = ɑ.e(b,x)

2 Y = ɑ.e(b,x) + γ.e(d,x)

Gaussian model 1
Y =�1e

(

−(
x−�1

�1
)
2
)

2
Y =�1e

(

−(
x−�1

�1
)
2
)

+�2.e

(

−(x−
�2

�2
)
2
)

3
Y =�1e

(

−(
x−�1

�1
)
2
)

+…+�8.e(−(x−�8∕�8)2)

F I G U R E   9   The modeling of the (Ik, Vk) experimental data points with (A) polynomials of degrees 2-8; (B) exponentials of degrees 1 and 2 
and Gaussian of degree 2

F I G U R E   1 0   The modeling of the (Pk, Vk) data test with the (A) polynomials of degrees 2-8; (B) exponential of degree 2 and Gaussians of 
degrees 1, 2, and 3
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•	 Case 2, P-V curve, P = f (V): 6th degree of Polynomial 
model Equation 13, or the 2nd order of Gaussian model, 
Equation 14, as follows:

where β, ɑ, γ, �, ρ, b, d denote the fitting coefficients.  
The fitting evaluation parameters for the approximate  
of I-V and P-V characteristic curves are listed in  
Table 3.

The fitted curves show some matches to the experimental 
data. The accurate fitting of (V, I, P) is highly influenced by 
the higher degree for each case.

3.2.2  |  Single-diode model
The modeling process assists in knowing the characteris-
tics and physical components of the solar cell. An accurate 
performance prediction reflects the modeling but requires 
the design of a model with sufficiently balanced complex-
ity and accuracy.25 The most commonly used model is the 
traditional single-diode model in parallel with a light gen-
erated current source IPH, a series resistor RS, and a shunt 

(13)P (V)= �0V6+ �1V5+…+ �5V1+�6V0

(14)P (V)= �1.e(−((V−�1)∕ �1)2) + �2.e(−((V+�2)∕ �2)2)

F I G U R E   1 1   The best fitting result for the measurement (Ik, Vk) data with (A) an 8th degree polynomial model with RMSE = 0.0151 and (B) 
2nd degree exponential model with RMSE = 0.0533

F I G U R E   1 2   Modeling results of the experimental data power curve (Pk−Vk) fit with (A) a polynomial model of degree 6 with 
RMSE = 0.2338; (B) a Gaussian model of degree 2 with RMSE = 0.4040
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resistor RSh, as shown in Figure 13A, also known as the 
five-parameters model.26,27 A general equivalent equa-
tion of a single-diode model of the current-voltage out-
put characteristics can be expressed mathematically as in 
Equation 15:

where IPH is the photocurrent, Is is the saturation current, q = 
1.6×10−19 C is an electron charge, K = 1.38 × 10−23 J/K is 
Boltzmann’s constant, Tc is the working temperature (Kelvin), 
A is an ideal factor, RSh is the shunt resistance, and RS is the 
series resistance, while Id and ISh denote the diode and shunt 
resistance currents. Thus, an equivalent circuit is used together 
with the equivalent equation to express a model for the current-
voltage characteristic (I-V) curve of a PV cell or module. The 
most useful terms are the open circuit voltage Voc, the short 
circuit current ISC, and the current and voltage at the maximum 
power point (IMP and VMP), respectively, as shown Figure 13B.

The (I-V) characteristic curves of the measured data 
are verified through a MATLAB simulation. The simu-
lation has been designed for the same solar module that 
we have tested experimentally according to the data listed 
in Table 1. The developed Simulink MATLAB design is 
shown in Figure 14.

The results of the simulation are obtained as a P-V and 
I-V curves, that are used as a reference to compare them 
with each of the experimental and the proposed model. To 
verify the measured and modeled I-V curves, a Simulink 
MATLAB program was used, and the results are shown in 
Figure 15.

After repeating the I-V measurements in three time-
consecutive under the same weather conditions, it is noted 
that three nonidentical curves of I-V have created, as well as 
the simulation and the CNN-model curves. It is worth men-
tioning that the CNN model has used the last test data for 
training its network (measurements3). It is obvious that the 
maximum value of Isc in the simulation is almost the same as 
in measurements1, which is the first testing attempt in terms 
of time. The Isc provided by the manufacturer is 3.4 Amp 
under STC (see Table 1), but since our weather conditions 
were at 370 W/m2 and 28°C, then the measured Isc = 1.26 
Amp is an acceptable value, and the difference between the 
simulation and real measurements is about 0.002 Amp (see 
Table 4). It is also noted that the experimental measurements 
are not the same but are closer to the simulation results in 
measurements1 where the ambient temperature was 28°C for 
the cells and the irradiance fixed at 370 W/m2, the differ-
ence in Voc is below 0.7 V (20.1 V simulated and 19.43 V in 
measurements1).

After three consecutive testing attempts over time, the dif-
ference in measurements is significant, which in turn indicates 
that there is a power loss of about 1.7W (17.1W simulated 

(15)I = IPH− Is

[

exp

(

q
(

V + IRS

)

KTCA

)

−1

]

−
(

V + IRS

)

∕Rsh

Figures Modeling type R2 RMSE SSE

Current-voltage 11(a) Polynomial 8th 0.9994 0.0151 0.0032

11(b) Exponential 2nd 0.9903 0.0533 0.0541

Power-voltage 12(a) Polynomial 6th 0.9984 0.2338 0.6011

12(b) Gaussian 2nd 0.9946 0.4040 1.9585

T A B L E   3   The fitting evaluation 
parameters for both I-V and P-V

F I G U R E   1 3   A, Equivalent circuit of the single-diode model. B, The I-V characteristic curve of a PV cell
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and 15.4W measured). This difference or the loss is mainly 
due to the rise in PV-module surface temperature which re-
flects a decrease in the voltage Voc from 20.1V simulated to 
17.9V in measurements3, and consequently a decrease in the 
generated power. Additionally, in MATLAB-based simula-
tion, the mathematical model that is used to model a PV mod-
ule and cell neglects the effects of parasitic resistances and it 
is considered that Iph ≈ Isc and all the PV cells are same and 
subjected to same applied conditions. For instance, the series 
resistance of the solar cell Rs increases over time.28

The above figure (Figure 15) shows a good coincidence 
between the measurements and the modeled data for the I-V 
curve. However, this model is only valid under particular 
constant weather conditions at which the measurements have 
been taken. The RMSE between the experimental data and 
the CNN model is 0.011547, while that for the simulation 
data is 0.028111. Comparing the values of the RMSE for the 
CNN model and the simulation model shows that the error 
measures for the CNN model are closer to the measurements 
data under the same conditions.

F I G U R E   1 4   A simulation model of a solar PV module

F I G U R E   1 5   Comparison of the I-V 
curve results from each of the simulation 
at the working conditions, three time-
consecutive experimental measurements (1, 
2, and 3), with the proposed CNN model
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The proposed model was validated using the measured 
I-V characteristics, the results are compared and illustrated 
in Table 4. It is obvious that the CNN model is capable of 
accurately simulating the characteristics of the module with a 
good agreement between the two curves.

Figure 16 displays a comparison of the I-V curve by each 
of the experimental measurements, the eighth order polyno-
mial fitting equation, and the proposed CNN model.

CNN-model results were also verified by comparing the 
experimental results with the manufacturer datasheet, which 
proves the effectiveness of the proposed modeling method.

4  |   CONCLUSIONS

Modeling process assists in knowing the characteristics of 
physical components of the solar cell. The paper covered ba-
sically several models (Polynomial, Exponential, Gaussian, 
and single-diode Models), to approximate the experimental 
measurements of I(V) and P(V), and P(G, T, Voc, Isc, Im, Vm, 
V). The work compares those models with the CNN-based 
mathematical model. The results show various fitting ac-
curacy and depend on different factors for each individual 
method. The addressed approaches of PV models can facili-
tate the design and characteristic analysis for different types 
of solar PV module/cell.

The proposed model (CNN) is a simple architecture which 
is developed to model and estimate the profile of the gener-
ated power of a 55 W polycrystalline PV module. The ability 
of the CNN to estimate the PV generation has been satis-
fied with reasonable accuracy. This work demonstrates that 

the CNN models perform better than that by the polynomial, 
exponential, Gaussian, and the traditional single-diode mod-
els. CNN allows determination of electrical parameters for 
a PV module and the assessment of the power generated for 
any conditions at a constant temperature and solar irradiance.

The stepwise process for modeling the PV module helps 
to persuade more scholars into PV study and will give an idea 
of perceptive of I-V and P-V attribute of a PV panel. Except 
for it, such a representation would offer a systematic tool to 
envisage the behavior of future solar module under climate 
and physical parameter changes.

As a future work it is possible to design an equivalent cir-
cuit which can reflect the behavior of the solar cell/module, 
and even the PV array after the training is accomplished. This 
is done by using the analogue computer schemes, where each 

T A B L E   4   Comparison of the module output current among the 
experimental, CNN output, and simulation results

Vexperimental/input Iexperimental ICNN model ISimulation

18.01 0.112 0.099 0.1125

17.93 0.123 0.122 0.123

17.7 0.157 0.1571 0.157

16.98 0.332 0.331 0.332

16.56 0.466 0.457 0.451

15.35 0.735 0.845 0.78

14.33 1.062 1.058 1.153

11.89 1.22 1.216 1.254

5.88 1.248 1.246 1.257

2.86 1.26 1.2606 1.258

F I G U R E   1 6   I-V Comparison by each of the experimental measurements, the eighth order polynomial fitting equation, and the proposed 
CNN model
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neuron can be represented by op-amp summer circuit. The 
values of the resistors are equivalent to the network weights. 
For the neurons that have linear activation functions, the 
summer op-amp circuit can satisfy the linearity behavior. 
But, for neurons of nonlinear activation functions, another 
one or two op-amp circuit can be employed to present the 
nonlinearity action on the output of the summer amplifier. 
As consequently, a network of passive and active electronic 
components can achieve this modeling.
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