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Abstract—Data analytic is very valuable in any domain that
produces large amount of data making demands on full datasets
to be revealed for analytic purposes are rising. Regardless,
the privacy of the released dataset should be preserved. New
techniques using synthetic data as a mean to preserve the privacy
has been identified as appropriate approach to fulfill the demand.
In this paper, a privacy-preserving data synthetic framework for
data analytic is proposed. Using a generative model that captures
the density function of data attributes, the privacy-preserving
synthetic data is produced. We performed classification task
through various machine learning classifiers in measuring the
data utility of the new privacy-preserving synthesized data.

Index Terms—Privacy Preservation, Data Mining, Kernel Den-
sity Estimation, Dataset Shift

I. INTRODUCTION

THE privacy law for individual customer, such as Malaysia
Personal Data Protection Act 2010 [1], as well as in other

nations [2], [3], has enforced organizations to act accordingly
in order to ensure any kind of data processing should not
be used to directly or indirectly invading user privacy. With
rapid advancement in statistic and machine learning, as well
as their large number of optimized software that are readily
available, privacy preservation task such as de-identification
can be easily broken. Variations of inference attacks, such as
on Netflix dataset [4], location data [5] and social networks
data [6], shows that simple modification of sensitive data by
removing identifiers or by generalizing or suppressing data
features can result in major information leakage and cannot
guarantee meaningful privacy for data owners.

Proposing a suitable privacy preservation model is not a
trivial task. One has to consider many aspects such as privacy
specification [7], i.e. the kind of data need to be masked,
computing performance [8] especially on large continuous
data, latency [9] in which the data transaction occurs between
two parties e.g. customer and utility provider and of course,
security [10] such as the risk of data forging or denial
of service attacks. Currently, all techniques that have been
proposed to preserve the data privacy can be grouped into
three categories, such as follows:

1) Cryptography. Public key infrastructure [11] has been
used extensively to provide simple encrypted communica-
tion, such as data authentication between utility provider
and utility customer. For example, the utility provider can

formalize a clearance level model according to the cus-
tomer status. However, cryptography requires significant
computing time. As a result, the data transmission time
to the endpoint will also increase.

2) Statistical interference, which includes data anonymiza-
tion [12], data randomization [13], and/or data perturba-
tion [14], in which these processes are used to improve
the generalization property, thus, increasing the difficulty
of performing microanalytic of particular data. However,
statistical interference must be modeled properly. Too
much generalization on dataset will hinder the process of
obtaining the useful analytic model. Hence, it is important
to ensure the process present very minimal impact to the
whole series of data in term of probabilistic perspective.

3) User intervention. In this case, end user directly in-
terferes with the data collection process [15], [16]. For
example, in electric reading, user illegally tampered the
electric meter for malicious purpose, such as for reducing
billing cost.

Data owner can protect the data privacy through rigorous
privacy definitions, such as differential privacy [17]. However,
this could reduce the data utility in extracting the useful
information. For example, differential privacy is limited to
interactive count queries on statistical databases [18], and
not the full records. In non-interactive setting, where there
is a middleman that facilitate the data exchange between
data owner and data user for releasing generic data, these
mechanisms is simply not feasible, especially on large amount
of high dimensional dataset.

Demands on full datasets are increasing, yet the privacy
of the released dataset should be preserved. Hence, many
researchers proposed to use synthetic data as a mean to
preserve the data privacy [19]. Privacy-preserving synthetic
data not only can be used by targeted data user, but can also
be used in educational purpose in various sectors, and for data
application development such as developing advanced machine
learning and pattern recognition model.

Thus, we are proposing a privacy-preserving data synthetic
generator framework for data analytic, without downgrading
the utility of the synthesized data. Our framework consists of
three main tasks: estimating the density function for a given
dataset, generating new synthetic dataset and finally utilizing
the new synthetic dataset. We measured the data utility of the
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synthetic data based on performing classification task through
various machine learning classifiers.

However, our work is unique, such that, instead of directly
sampling new records from existing distribution function [20],
we project the original data into other distribution function,
and perform the sampling on that new distribution function.
Unlike only generating partial synthetic data such as in [21],
we managed to generate new synthetic data with similar data
utility.

This paper is organized as follows: Section II discusses
recently proposed privacy preservation techniques in literature.
Section III describes our privacy preservation techniques, that
mainly derived from statistical model. Section IV outlines our
experimental results. Then, Section VI discusses the limitation
and how to address the limitation of the proposed privacy-
preservation model. Finally, Section VII concludes this paper,
together several future works that can be done to extend this
privacy-preservation model.

II. PRIVACY PRESERVATION TECHNIQUES

Data analytic is very useful in any domain that produces
large amount of data, for example in power distribution, in
which can be used to solve many problems, such as in fraud
detection system [22], system balancing and transmission on
power flow network [23], pricing and billing [24], measuring
voltage and power quality [25], as well as outage and fault
detection [26]. Data analytic also can be used for illegitimate
purpose, if, the data have been exposed or leaked to the
irresponsible parties. Therefore, preserving the data privacy
is a critical task especially in preventing known or unknown
malicious activities in the future.

Hence, besides cryptography, which is computationally ex-
pensive, and has almost zero data utility value, one can derived
a statistical model to improve the privacy preservation on the
data. In [27], a low sampling rate method has been proposed to
preserve the data privacy without reducing anomaly detection
accuracy. However, even though, anomaly detection is a very
important task, it is actually a rare event. Thus, low sampling
rate could provide very imbalanced data, which might not suit
properly with most of the analytic tasks.

Improving the data generalization based on k-anonymity
[28], such as for visualization task [29] or monitoring task [30]
has an additional complexity, where prior knowledge of what
need to be hidden must be carefully predefined. Again, im-
proper data generalization through k-anonymity metric alone
could result introduce bias to the dataset, which makes pattern
recognition task increasingly hard.

Another method is data perturbation, where the data is dis-
torted in order to mask the original distribution, such as in [31].
However, data perturbation only make sense if the distortion
can be properly defined, because carelessly performing data
distortion will make any relation exists in the data will be
disturbed, hence resulting nonsensical pattern being learned
by data modeler. Regardless, there are many well-studied and
sophisticated machine learning algorithms that can identify
any distorted data, in term of anomalies, novelties or outliers
detection tasks [32].

Finally, data randomization involve data swapping between
records or fields or both [33]. Again, this broke the structure
of data, and also computationally expensive, depending on
the choice of data randomization algorithms. Misguided data
will just increase the training time in order to come with
sensible model on that data. Furthermore, when doing data
randomization, one need to track the randomization process,
in order to recover the data back to the original form.

Regardless, these techniques, which can be grouped as
syntactic privacy protection; their success rate depends on
the knowledge of the adversaries. Again, these process can
significantly reduce the data utility if these techniques are
combined together to achieve the privacy metric, as some of
the data attributes are sometime suppressed to achieve that.

Another group of approaches that has gain some popularity
in literature for preserving the data privacy is through synthetic
generator mechanism [34]. This approach is used with respect
to its input data, in order to produce privacy-preserving
synthetic data. Unlike syntactic privacy protection, synthetic
generator mechanism keeps the data in original format. This
allow the data to be used by several applications or program-
ming code, especially anything that require processing on raw
data, which obviously can’t be achieved by excessive data
sanitation.

Nevertheless, even though synthetic generator mechanism
provide almost similar level of data utility with original
dataset, the mechanism of producing those data is less under-
stood. Furthermore, syntactic privacy protection provides clear
and tangible privacy preservation effect compared to synthetic
generator mechanism, at the cost of data utility, in significant
way. This is is the reason why syntactic privacy protection
is widely used in smart meter application and various other
domains that require privacy-preserving task.

III. GENERATIVE MODEL

In this section, we describe our generative model in synthe-
sizing new privacy preserving synthetic data. Our synthesizer
is a probabilistic model that capture the density function of
data attributes with privacy-preservation in mind. The synthe-
sizer must learn from the original data in order to produce
new synthetic data.

Let dataset X = {xd
1, x

d
2, . . . , x

d
n} consists of n records with

d random variables associated with the records’ attributes, be
the input vectors in input space. Our generative model, should
map X into new privacy-preserving dataset X ′ with respect
to X . Then, X ′ will be the one to be utilized by the data user.

If the new record x′ is produced based on generative model,
and achieve the desired privacy properties in this case unlinka-
bility hence, it proves that x′ meet the privacy requirements in
the required process. If x ≠ x′, then unlinkability is achieved.
In this case, unlinkability means lack of ability to determine
the source of x′ is from x.

A. Distribution Shifting

Most of the time, dataset X comes with a target variables
Y , usually in form of a column matrix, {y1, y2, . . . , yn}. Each
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value in Y correspond to attributes in X , in respected order.
The joint distribution between x and y is defined as follows:

P (y,x) = P (y|x)P (x) (1)

The goal is to estimate P (x), then shift it into Pnew(x), before
generating new synthetic dataset from Pnew(x).

In this work, we assume every x ∈ x is independent to
each other. Let x1, x2, . . . , xn be several records drawn from
a common distribution described by the density function f .
The kernel density estimate is defined such as follows:

f̂h(x) =
1

nh

n∑
i=1

K
(x− xi

h

)
(2)

where

• x is a single data point;
• h is the bandwidth, also known as smoothing parameter;
• K is the kernel function;

The choice of K is not crucial. In this paper, we opt for
Gaussian kernel, defined as follows:

K(x;h) ∝ exp
( x2

2h2

)
(3)

The inferred distribution then is shifted to another distribu-
tion such that:

fnew(x) = zf̂h(x) (4)

where z is the user-defined weights. As data usually comes
with several unique target variables, {y1, y2, . . . , yn}, hence,
there will be n kernel density estimate models.

In this paper, we implement z as a predefined weight of each
sample, directly to each feature of that sample, according to
n different kernel density estimators, which is the number of
classes of that dataset. Algorithm 1 describes how the dataset
is being prepared before being estimated by kernel density
estimator in Algorithm 2.

Algorithm 1 Dataset Preparation
1: procedure SHIFT(X)

Require:
Dataset X with label Y .

2: classes ← {Y }
3: X′ ← ∅
4: for y ∈ classes do
5: x′ ← ∅
6: for x ∈X do
7: if y ∈ (x, y) then
8: x′ ← z.x
9: X′ ← x′

10: end if
11: end for
12: end for
13: end procedure

Algorithm 2 Density Estimation
1: procedure KDE(X′)

Require:
Dataset X′ with label Y .

2: classes ← {Y }
3: for y ∈ classes do
4: X′

y ←X′ ∩X′
¬y

5: Fy ← model(X′
y) ▷ Equation 2

6: end for
7: end procedure

B. Data Synthesization

Once the probability distribution has been approximately
inferred, new data x will be generated through resampling over
the weighted samples by the new distribution model, such in
Equation 4. Hence, the new synthetic dataset will be different
compared to the original samples.

1) Given X , multiply each x ∈ x, for every x ∈ X with z,
as described in Algorithm 1.

2) Estimate the new probability density function with kernel
density estimator, as described in Algorithm 2.

3) Generate new dataset X ′ using the new probability
density function. This process is simply to get another
data point that lies within the density function. Total of
generated data will be similar to the original data. The
data however is not similar to the original data.

Finally, the new X ′ will be used by data user for various
data analytic applications, such as clustering, regression or
classification tasks. In this paper, we limit our scope only to
classification task.

C. Classification Model

In this paper, we will be analyzing the utility of our synthetic
data based on classification task. The classification model,
which combined together with kernel density estimator and
data synthetic are illustrated in Figure 1.

Fig. 1. The classification model, starting from shifting the dataset until the
classification process.

Figure 1 shows the sequence of classification task using
synthetic data. The classification task can be divided into two
stage. The first stage is training task, in which the classification
model is trained using existing data. The second stage is the
prediction task. For any unseen data, the task is to classify
which class the unseen data belong to. Both stages will
undergo the same process illustrated in Figure 1. However,
for prediction task, process is a little bit different compared to
training task. The prediction task is illustrated in Algorithm 3.
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Algorithm 3 Prediction Task
1: procedure PREDICT(x)

Require:
Record x.

2: x′ ← z.x
3: F ← estimate(x′)
4: {x1, x2, x3, . . . , xn} ← generatePoint(F ) \ x′

5: x′′ ← pickOne({x1, x2, x3, . . . , xn}) ▷ Randomly
6: ŷ ← f(x′′) ▷ Prediction
7: end procedure

In Algorithm 3, the prediction will be performed on syn-
thetic data, estimated by the predefined KDE models which
is obtained from the training task in the first stage. Hence,
any prediction task will always be accompanied by the KDE
models such as defined in Algorithm 2, including the z value
defined in Algorithm 1.

IV. EXPERIMENTATION AND ANALYSIS

The original and synthetic data is evaluated through clas-
sification task. Table I describes the data used in this ex-
periment. The datasets were retrieved from UCI machine
learning repository [35]. The dataset are Fertility Diagnosis
[36], Iris, Haberman, Liver Disorder, Breast Cancer, Pima
Indians Diabetes, Thyroid and Bank Marketing [37]. Prior
to classification task, each dataset is being preprocessed such
that any non-numeric attributes are transformed into numeric
attributes, through unique mapping, starting from 0 to n unique
non-numeric values.

TABLE I
DATASET USED IN THIS EXPERIMENT

Dataset # Records # Attributes # Classes

Fertility 100 10 2
Iris 150 4 3
Haberman 306 3 2
Liver Disorder 345 7 2
Breast Cancer 699 10 2
Pima 768 8 2
Thyroid 3,772 21 2
Bank Marketing 45,211 17 2

The classification experimentation is evaluated through 10-
fold cross-validation method. We used common classifiers
such as follows: Naive Bayes [38], Support Vector Machine
[39], and Decision Tree [40]. The parameters of the experiment
are defined as follows:

1) z values for each dataset is defined such that the deviation
between classes is not obvious, but in the same time,
to make the new dataset more diverge from the original
dataset. Each x will be weighted accordingly to its class,
by z, such as follows:
• z1 = log10(2.00001) for class 1.
• z2 = log10(2.00002) for class 2.
• z3 = log10(2.00003) for class 3.
Since we only deal up to 3 classes, hence, we only specify
values for three different z.

2) Support Vector Machines parameters:

• RBF Kernel = K(x,x′) = exp
(
−∥x−x′∥2

2σ2

)
• Kernel parameter, σ = 0.01
• Regularization parameter C = 64

Each classifier is based on WEKA implementation [41].
Finally, Table II shows the experimentation results for each
dataset, original versus synthetic data across all classifiers,
based on accuracy defined in Equation 5.

accuracy(y, ŷ) =
1

n

n−1∑
i=0

1(ŷi = yi)× 100 (5)

In Equation 5, y is the original target value, ŷ is the predicted
target value and n is the number of samples. We only count
the number of ŷi = yi, and divide it by the number of samples
before being multiplied by 100 to retrieve the percentage value.

TABLE II
CLASSIFICATION RESULTS BETWEEN ORIGINAL DATA AND SYNTHETIC

DATA THROUGH NAIVE BAYES (NB), SUPPORT VECTOR MACHINES
(SVM) AND DECISION TREE (DT) CLASSIFIERS IN TERM OF ACCURACY

PERCENTAGE.

Dataset Type NB SVM DT

Fertility Original 88.00 88.00 85.00
Synthetic 88.00 88.00 86.00

Iris Original 96.00 92.67 96.00
Synthetic 91.95 93.96 88.59

Haberman Original 74.51 73.20 72.88
Synthetic 76.47 73.53 75.82

Liver Disorder Original 55.36 57.97 68.70
Synthetic 59.71 57.97 57.68

Breast Cancer Original 95.99 97.13 94.56
Synthetic 95.42 96.42 93.99

Pima Original 76.63 77.21 73.83
Synthetic 77.34 73.82 76.04

Thyroid Original 88.46 93.95 98.86
Synthetic 99.01 93.87 93.18

Bank Marketing Original 85.81 89.34 89.81
Synthetic 99.78 97.50 99.78

From the experimentation, we obtain mixed results, some
of the synthetic dataset has lower accuracy values, while other
maintain or achieve higher compared to the original dataset.
Regardless, based on statistical test using Wilcoxon Signed-
Rank Test [42], irregardless of the classifiers, the z-value is
-0.9211. The p-value is 0.35758. Hence, the result is not
significant at p ≤ 0.05. Thus, fail to reject null hypothesis.
Therefore, the data utility is maintained between original and
synthetic dataset.

Bank Marketing dataset provides the most appreciation
of accuracy values from original dataset to synthetic dataset.
There are two complementary possibilities in this result. The
first one, our weighting mechanism could introduce significant
bias between two classes, in which classifier can identify
easily which one belong to which class. The second one is
the dataset attributes could be heavily independent to each
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other, hence one small change in the attribute can affect the
overall classification performance, while in the same time, has
no effect on other attributes.

This is also true for otherwise, such that the classification
performance in synthetic data is degraded compared to the
original dataset. This is observed in classification performance
of Iris, Liver Disorder, Breast Cancer, Pima and Thyroid.
The weighting mechanism might not applicable to the dataset
as there probably a possibility of existing joint distribution
between the dataset attributes. Therefore, when we perform
the shifting process, the variance of the overall dataset is
significantly increased. High variance can cause a learning
algorithm to model the random noise in the training data,
rather than the intended outputs. As a result, the synthetic
datasets gives lower classification results compared to when
doing classification task on original dataset.

Support Vector Machine provides the most consistent classi-
fication accuracy performance between original and synthetic
data compared to other classifiers. Briefly, this is because
Support Vector Machine task is to find the classification model
that has good generalization property, compared to Naive
Bayes and Decision Tree where these classifiers only try to
find model that has less misclassification results.

V. PRIVACY PROPERTIES ANALYSIS

In this paper, we consider 2 main privacy properties, which
are Unlinkability, and Deniability [43], [19]. These properties
are defined as follows:

1) Deniability provides a mechanism for users to deny their
involvement in using certain resources.

2) Unlinkability ensures that a user may make multiple uses
of resources or services without others being able to link
these uses together.

In this paper, we assume that a randomized algorithm
A satisfies unbounded ϵ-differential privacy if the relation
P (A(D1) ∈ S) ≤ eϵP (A(D2) ∈ S) for any set S and any
pairs of databases D1, D2, where D1 can be obtained from
D2 by changing the value of exactly one tuple. Therefore:

1) Since we are producing similar number of records as the
original dataset, then P (A(D1) ∈ S) = 1 and D1 is the
whole S.

2) If D1 is the original dataset and D2 is the syn-
thetic dataset, then, it should be P (A(D2) ∈ S) ≤
eϵP (A(D1) ∈ S). In this case, eϵ = 1.

Hence, not only the shifted synthetic dataset is totally differ-
ent compared to the original dataset, but also the composition
of independent and dependent features are also changed.

VI. DISCUSSION AND LIMITATIONS

Table II provides interesting results, where classification
results were increasing accurately when using synthetic data.
This is because, our weighting scheme can sometime provide
bias to some of the dataset attributes, which could help
classifiers in discriminating each class properly, or otherwise.

Overall, the classification results tabulated in Table II shows
that our privacy-preservation model can be used to preserve
the data utility. However, there are several limitations, in which

can be addressed properly. Currently, our model only work on
numerical data. Hence, in order to apply in on non-numeric
data, some sort of data transformation, from non-numeric to
numeric data need to be performed.

Furthermore, as previously stated, the weighting mechanism
could introduce unnecessary bias to the dataset attributes. Our
suggestion is to properly normalize the data, so the bias effect
can be minimized. For example, in datasets Pima, Haberman,
and Bank Marketing, some of the attributes have very large
mean and standard deviation values, while other attributes have
very low mean and standard deviation values.

Moreover, regarding to the weighting issue, our framework
could pose a problem if we have large number of classes. For
example, if we have 10 classes, the weight of class 1 and
class 10 will result a total bias to the whole dataset. Thus,
adversary can directly identify that the data might somehow
systematically modified, though it is hard to relink back to
the original data. Regardless, one can just use similar weight
value across all the classes to avoid this problem.

This paper also assumes that each data attribute is inde-
pendent to each other. This is hardly the case in real world,
as most of the time there must be some correlation between
two or more attributes. Hence, even though we managed to
preserve the data utility, it still makes no sense if two random
variables with synthetic values, for example, such as height
and gender has negative correlation.

Another drawback of this method is the increasingly compu-
tational complexity, at O(mn), especially during the training
stage. In this case, m is the total number of records in the
dataset while n is the number of records from the dataset
that will be used to generate new synthetic records. Hence,
when the data size is increasing, the number of records from
the dataset that need to be sampled is also increasing. Thus,
the time to complete the generation process will also increase
significantly, at the power of n.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a new shifted induced dataset
mechanism for preserving the data privacy, based on three
different procedures: estimating distribution function of multi-
dimensional data, generating new synthetic data from shifted
distribution function, in which both of them are combined
together and evaluated through task. Through our experi-
mentation, we demonstrated that our method is capable in
maintaining data utility while preserving the privacy of data
in classification task.

There are many things that can be achieved for future work.
The first thing is to improve the data generation mechanism
with more sophisticated techniques. For example, properly
designing weighting model to reduce the bias across dataset
attributes as well to each record in the dataset. More impor-
tantly, a proper weighting mechanism must solve the problem
for dataset that has large number of classes. Care also must
be taken when dealing with various kind of data that is not
numeric, or if the data should not be in decimal values.

Secondly, a distribution model that capture the joint distribu-
tion between the attributes itself must be designed properly, in
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order to make more sensible synthetic data. If not, the variance
of the data might be increased, hence reducing the overall
data utility, either it is for classification task, regression task
or clustering task.

Finally, instead of doing retraining, it will be better to
use the existing training model that is modeled based on the
synthetic data, and use it on the original data. Designing flex-
ible learning mechanism, such that it can be generalized over
two similar structured datasets, with each dataset comes from
different probability distribution function, will significantly
decrease the time to perform any analytic task.
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