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Abstract: This paper investigates micromachined antenna performance operating at 5 GHz for
radio frequency (RF) energy harvesting applications by comparing different substrate materials
and fabrication modes. The research aims to discover appropriate antenna designs that can
be integrated with the rectifier circuit and fabricated in a CMOS (Complementary Metal-Oxide
Semiconductor)-compatible process approach. Therefore, the investigation involves the comparison
of three different micromachined antenna substrate materials, including micromachined Si
surface, micromachined Si bulk with air gaps, and micromachined glass-surface antenna, as
well as conventional RT/Duroid-5880 (Rogers Corp., Chandler, AZ, USA)-based antenna as
the reference. The characteristics of the antennas have been analysed using CST-MWS (CST
MICROWAVE STUDIO®—High Frequency EM Simulation Tool). The results show that the Si-surface
micromachined antenna does not meet the parameter requirement for RF antenna specification.
However, by creating an air gap on the Si substrate using a micro-electromechanical system
(MEMS) process, the antenna performance could be improved. On the other hand, the glass-based
antenna presents a good S11 parameter, wide bandwidth, VSWR (Voltage Standing Wave Ratio)
≤ 2, omnidirectional radiation pattern and acceptable maximum gain of >5 dB. The measurement
results on the fabricated glass-based antenna show good agreement with the simulation results. The
study on the alternative antenna substrates and structures is especially useful for the development of
integrated patch antennas for RF energy harvesting systems.

Keywords: micromachined antenna; glass; RF energy harvester; bandwidth; antenna gain; MEMS;
silicon; RT/Duroid 5880; dielectric permittivity; ISM band

1. Introduction

In recent years, there has been a growing interest from both academia and industry in the
deployment of energy capture of ambient energy for fully autonomous powering of microdevices,
using different energy harvesting techniques. These microdevices, such as sensors, actuators and so on,
are extensively utilized in various daily life applications such as in wearable devices, batteryless remote
controls, structural healthcare and agriculture monitoring systems, the Internet of Things (IoT), and so
on [1–3], in which low power consumption is highly demanded. Conventionally, energy supplies for
these devices are powered by chemical batteries. The battery has a limited lifetime, limited energy
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capacity, and requires high maintenance, while chemical leakages and waste disposal in long-term
circumstances can bring environmental issues [4–6]. Therefore, the energy harvesting technique plays
an important role in replacing the dependency of chemical batteries.

Several ambient energy sources for energy harvesting methods, such as temperature, light, radio
frequency (RF) electromagnetic field, vibration, motion, electric and magnetic field, and so on, have
been studied in the literature [7–9]. Based on the ambient energy sources, RF energy harvesting is
preferred compared to other potential energy harvesting methods. RF energy is omnipresent at any
time. On a daily basis, RF energy sources are consistently produced by transmission towers, Wi-Fi
signals, mobile base stations, cell phones, radio broadcast stations, televisions, and so on. RF energy is
also able to provide broad extended support and lifespan to sensor devices.

The typical RF energy harvesting structure includes three main parts: the antenna, impedance
matching circuit and rectifier circuit. In an RF energy harvesting system, the radiated RF signals from
a transmitter station are captured by the antenna and converted into alternating current (AC) voltage.
The matching circuit composed of inductor–capacitor (LC) components needs to be 50-Ω matched
to ensure for maximum power transferal to the matched rectifier. The rectifying circuit converts AC
voltage into direct current (DC) voltage to the attached application load. However, the omnipresent
RF energy has low power density at a few µW [10]. The general structure of an RF energy harvesting
system with a low-input-power setup is shown in Figure 1.
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An efficient receiving antenna of the RF energy harvester plays an important role in capturing the
RF signal at the available frequency band. An antenna is the first and the most important element of the
RF energy harvesting system, and it affects the amount of captured energy from the environment [4].
Numerous research works have been reported on the antenna for RF energy harvesting purposes to
achieve appropriate characteristics, such as high efficiency [11–13], lower return loss [1,14,15] and an
omnidirectional radiation pattern with high gain [11,12,16].

Most of the reported materials for the antennas designed for RF energy harvesting are made
of conventional printed circuit board (PCB)-based materials such as Rogers, RT/Duroid and FR4
substrates [1,11,14,17], which is due to the established fabrication concepts from many years ago, low
cost, easy fabrication and easily available material.

However, the mechanical and structural stability of the materials is low, owing to low mechanical
strength, a porous structure and dependence on the coating properties of the substrates. Furthermore,
these substrate materials are not compatible with integrated CMOS microcircuitry. They need wire
connections, which result in low energy efficiency due to parasites and power losses. On the other
hand, it is impossible to alter the conventional substrate to attain low dielectric permittivity, εr, in order
to provide better efficiency, wide bandwidth and a low radiation resistance parameter.

One possible approach to improve these parameters is by implementing silicon (Si) technology,
which was already established many years ago. Si-based microfabrication in micro-electromechanical
system (MEMS) technology has shown excellent potential for the formation of highly efficient sensors,
and is contributing to the enhancement of various RF antennas and devices [18]. However, the high
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permittivity of Si substrates lowers antenna performance [19]. Some other applications of Si based
in RF, such as Si-based MEMS reconfigurable antennas and devices, have been reported in [20,21],
showing the high potential of the Si technology in RF circuit applications at different frequency bands.

Besides Si, glass is an appropriate material in MEMS due to its very good mechanical
properties such as scratch resistance and surface stability, and high thermal insulation and optical
transparency [22]. In fact, the high mechanical stability of glass, and its electrical properties, could
achieve suitable RF device specification [23]. Some other applications of glass material for antennas can
be found in the automotive industry for radio FM receivers and in high-speed terahertz communication
systems [24,25].

Si and glass structures can be manipulated by micromachining processes. For antenna
applications, the micromachining process involves the selective removal of glass or Si substrate
to produce an air cavity (εr = 1), which decreases the total εr of the substrate system [16,19].

In this project, we investigate alternative concepts to replace the conventional antenna substrate,
as well as different fabrication modes, in order to discover the optimal receiving antenna design for an
RF energy harvester system operating at 5 GHz in the unlicensed industrial, scientific and medical
(ISM) band, which is chosen as it is a free RF signal source that receives from various radio wireless
devices. The proposed antenna is appropriate to be integrated with the rectifier circuit in the RF energy
harvesting system, and indeed can be fabricated in a CMOS-compatible process method.

2. Materials and Methods

2.1. Antenna Design

Previously, it was reported by Yunus et al. 2018 that a Si-based bulk micromachined antenna could
display improved parameters in terms of the −10 dB bandwidth, radiation pattern, gain, and size
reduction [16]. In this paper, the investigation is carried out on a performance comparison between
the Si-based bulk micromachined antenna, Si- and glass-based-surface micromachined antennas,
RT/Duroid 5880-based PCB, and fabricated glass-based patch antenna as well.

The investigated antenna substrates include borosilicate glass (εr = 4.7, loss tangent tanδ = 0.0037),
RT/Duroid 5880 (εr = 2.2, tanδ = 0.0009) and single-crystal Si (εr = 11.9, electrical conductivity of 0.00025
S/m). The substrates have thickness of tsub = 2000 µm, 1500 µm and 525 µm for glass, RT/Duroid 5880
and Si, respectively. The difference in thickness is based on the availability of material specifications in
the market. A 1-µm-thick aluminium (Al) with electrical conductivity of 3.56 × 10−7 S/m is structured
as the metal layer for the patch and the ground plane deposited on both sides of the Si and glass
substrates. A standard electroplated copper of 17.5 µm provided by Rogers Corporation is structured
on both sides of the RT/Duroid 5880.

The three-dimensional (3D) model and top view layout of the rectangular, slotted patch antenna
are illustrated in Figure 2. The layout for each patch antenna is the same so as to fairly evaluate
the radiation characteristics and the current distribution at the layout edge, whereas the geometric
dimension is optimized to resonate at 5 GHz. The rectangular patch layout of the antennas is low-profile
and indeed easily fixed on a flat substrate. Here, the length and width of the substrate are indicated
by L and W, respectively, while patch length and width are indicated by l and w, respectively. Lv is
the vertical length, Lh is the horizontal length and Ws is the width of the slotted patch dimensions.
Furthermore, the dimensions of the air cavity underneath the patch are indicated with the width a,
and length b. The air cavity has a depth of 375 µm.
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Generally, the length l of the rectangular patch antenna is from 0.333 λ0 < l < 0.5 λ0, where λ0

is the free space wavelength. The substrate thickness tsub is usually from 0.003 λ0 < tsub < 0.005 λ0.
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where c is the speed of light (3 × 108 m/s), f is the operating frequency, and εeff is the effective εr index
of the substrate. This model shows good physical insight, but is less accurate. Resolution by property
optimization in the return loss parameter graph is performed by amending the dimension values using
the parametric sweep function in Computer Simulation Technology Microwave Studio (CST-MWS).

2.2. Fabrication of Micromachined Antennas

Figure 3 illustrates the cross-sectional view of the micromachined antenna structure and the
materials used in the experiment. Two types of micromachined antenna structure, that is, the surface
micromachined structure and bulk micromachined structure, are investigated using CST-MWS analysis,
while Si and glass are used as the substrates.
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2.2.1. Surface Micromachined Antenna

The surface micromachining is the process method to create an electromechanical structure on the
surface of the substrate [23,27]. Here, the Si or glass substrate materials are fabricated using a surface
micromachining method, in which the antenna pattern is fabricated on top of the substrate surface.
The side views of the structures are illustrated in Figure 3a,c.

Initially, a thin metal layer of 1 µm is sputtered on the top of the substrates. Then, a
photolithography process is used to pattern the metal patch, followed by a metal etch process. Finally,
a metal ground plane is created by sputtering 1-µm-thick Al on the bottom of the substrates.

2.2.2. Bulk Micromachined Antenna

Bulk micromachining is the process to create the 3D structure in the bulk substrate. This process
is necessary because the substrate thickness and the dielectric permittivity εr of the substrate influence
the performance of the antennas [16,19,23].

As the Si substrate has a high εr index, an appropriate substrate thickness of the Si is required
to decrease the εr index. A thick Si substrate and a high εr index excite surface waves that cause low
efficiency and attenuate the radiation pattern.

This process involves the etching of a portion of Si or glass substrate to create an air cavity
between the substrate and ground plane electrodes, as illustrated in Figure 3b. Here, a 525-µm-thick Si
substrate is anisotropically etched to create a cavity with a depth of 375 µm. Wet chemical etching by
potassium hydroxide (KOH) etchant liquid is used in the process, while 1-µm-thick Al is sputtered
at the top side of the substrate. The geometric layout of the radiator patch antenna is then patterned
by a photolithography process on the top layer of the Si substrate, followed by a metal etch process.
Underneath the Si substrate, a sputtered Al layer with the support of a hard transparent plastic sheet
is attached to the silicon substrate as a metal ground plane.

3. Results and Discussion

3.1. Simulation Results

The optimized dimensions are based on the first resonant frequency at 5 GHz of the S11 parameter
plot. The dimensions of these antennas are optimized using CST-MWS software. Each patch antenna
is characterized to have a 50-Ω input impedance. Here, by adjusting vertical length Lv, horizontal
length Lh and slot width Ws of the slotted patch dimensions, length L and width W of the substrate
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dimensions, as well as length l and width w of the rectangular patch dimensions, the optimized
dimensions of the antennas are obtained within the specification substrates chosen. The variation
of the antenna design parameter on various substrates is due to different εr values, substrate loss
and electrical conductivity [28]. Therefore, each substrate considers different dimensions to obtain
the targeted resonating frequency, while the dimensions of a, b and tair are based on the air cavity
structures of the Si substrate.

The studied dimension parameters are presented in Table 1. It reveals that the glass-surface
micromachined antenna has the smallest dimension size of the antennas. In fact, the miniature size of
the antenna makes it more compatible to be integrated into microcircuitry than other antennas.

Table 1. Dimensions and structures of antennas optimized at 5 GHz.

Antenna/Dimension (mm) L W l w a b tair (µm)

Micromachined Si surface 49 40 39.5 33 0 0 0
Micromachined Si bulk 30 27 17 17 20.46 20.46 375

RT/Duroid-based 26.99 27.5 16.98 23 0 0 0
Micromachined glass surface 19 19 10 15.5 0 0 0

The obtained simulated return loss results are plotted in Figure 4. From the simulation, it is shown
that the return loss S11 parameter is less than −10 dB for all apart from the Si-surface micromachined
antenna, which is due to the high εr. The S11 parameter below −10 dB indicates the range where the
antenna can operate properly.
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Thus, an improvement of the Si structure is achieved by reducing the thickness and creating an air
cavity in a definite ratio, which result in the S11 level dropping below −10 dB. This antenna structure
is achieved by a bulk micromachining process. It can be seen that the S11 parameter of the Si-bulk
micromachined antenna is improved by 33.5% compared to the Si-surface micromachined antenna.

Further investigation is conducted by replacing the Si-based-surface micromachined antenna
substrate with glass. Here, the glass substrate is selected because of its low εr. The results show that
the S11 parameter of the glass-surface micromachined antenna is increased by 55.1% compared to the
Si-surface micromachined antenna. The antenna comparison with the conventional PCB RT/Duroid
5880-based antenna shows that the S11 parameter of the glass-surface micromachined antenna improves
by 5.6%.

S11 and voltage standing wave ratio (VSWR) are significant parameters to specify the −10 dB
bandwidth parameter. The bandwidth parameter is accomplished based on the return loss of
less than −10 dB and the VSWR of less than 2. From the simulation, Si-bulk micromachined,
RT/Duroid 5880-based and glass-surface micromachined antennas performed with VSWRs of less
than 2. Accordingly, the parameter of −10 dB bandwidth was not present, and the VSWR was larger
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than 2 for the Si-surface micromachined antenna, which corresponds to its high εr index substrate in
the structure.

A wide bandwidth range achieved from 100 MHz to 2.45 GHz is a required parameter in the
ISM band standard. Thus, the −10 dB bandwidths of the glass-surface micromachined antenna of
approximately 117 MHz (from 5.0644 to 4.9474 GHz), and of the RT/Duroid 5880-based antenna of
approximately 115 MHz (from 5.063 to 4.948 GHz), are found acceptable. On the other hand, a narrow
bandwidth of 32 MHz (from 4.981 to 5.013 GHz) is seen for the Si-based bulk micromachined antenna.
The glass-surface micromachined and RT/Duroid 5880-based antennas are under the circumstance
of the standard wide-frequency range. It is therefore concluded that the antenna designed with a
substrate of low εr index contributes to a good bandwidth parameter performance.

The simulated E and H planes of 2D far-field radiation patterns of the antennas are shown in
Figure 5. In the E-plane, the antennas show a linear top symmetrical and omnidirectional beam pattern.
In the H-plane, the Si-surface micromachined antenna shows a nonhomogeneous minor radiation
pattern, and the other three antennas show a top omnidirectional beam pattern. It can be observed
that there is a major radiation pattern at the top side of both E and H planes. Thus, these antennas are
focused for the radiation beam from the top radiator patch.
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The simulated realized gain and the directivity parameters of the RT/Duroid 5880-based
antennas are higher compared to the other antennas. However, the parameters of the glass-surface
micromachined antenna can be considered better with a gain parameter of more than 5 dB as well as a
directivity parameter more than 3 dBi, good enough for deliberating the radiation beam in a desired
position. The higher directivity of the RT/Duroid 5880-based and the micromachined Si bulk antennas
compared to the glass-surface micromachined antenna illustrates that both antennas are more effective
at focusing the energy captured from a static position in a precise direction.

3.2. Validation

To validate the simulation analysis, the glass substrate was selected to undergo the fabrication
process owing to the most appropriate performance achieved in the simulation analysis among other
substrates. Therefore, the borosilicate glass-based-surface micromachined antenna was fabricated
using standard MEMS processes. The fabricated antenna was then measured in an anechoic chamber
environment on an indoor far-field range. The measured antenna property was then compared with
the simulation. The fabricated antenna from the top- and bottom-plane layouts is as shown in Figure 6.
The final structural layout of the glass substrates was following the dimensions optimized at 5 GHz.
The Al top feed line patch and Al bottom ground plane were connected to a coaxial SMA (SubMiniature
version A) connector.
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The measured return loss S11 and radiation pattern parameters of the antenna are shown in
Figures 7 and 8, respectively. It can be observed that the measured resonant frequency is shifted to
the left by approximately 50 MHz from the targeted 5 GHz frequency. In addition, the measured −10
dB bandwidth result also presented significant changes, more than twice as wide as the simulated
result. The shifting frequency and the change in bandwidth are possibly due to the inaccurate cutting
edge of the substrate structure and an imprecise geometric dimension of the pattern patch during
the fabrication process. Correspondingly, the slight inaccuracy and imprecise adjustment in the
geometric dimensions cause changes in the capacitive and resistive loss parameters of the substrate.
The measured return loss is slightly decreased, and a significant enhancement in the−10 dB bandwidth
is observed. A comprehensive analysis on the comparison between simulation and measurement
results of the fabricated antenna is summarized in Table 2. The VSWR of the fabricated antenna is
within the range of 1 to 2, which meets the simulated results.
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Table 2. Summary of antenna characteristics optimized at 5 GHz.

Antenna S11 (dB) VSWR −10 dB Bandwidth
(MHz) Realized Gain (dB) Simulated

Directivity (dBi)

Si-surface micromachined
(simulated) −8.45 22 n/a −7.8 3.628

Si-bulk micromachined
(simulated) −12.7 1.6 32 4.754 4.354

RT/Duroid 5880-based
(simulated) −17.75 1.3 115 5.555 7.195

Glass-surface micromachined
(simulated) −18.8 1.2 117 5.022 3.81

Glass-surface micromachined
(measured) −17.655 1.26 340 5.379 n/a

The E and H planes of 2D far-field radiation patterns of the measured antennas displayed
minor changes compared to the simulated ones. However, it is observed that the bottom side of the
radiator patch of the measured glass-surface micromachined antenna pattern is slightly wider than the
simulated ones. The illustrated pattern is possibly influenced by the wide bandwidth and high gain
parameters obtained at the operating frequency.

4. Conclusions

An investigation on antennas with various substrates and structures was performed for improved
RF energy harvesting. Initially, the geometry of the antennas was designed and optimized to be
suitable for capturing RF energy at a frequency of 5 GHz. The antenna characteristics were analyzed
by comparing the effects of the substrate material and the structure manipulated through the surface
and bulk micromachining processes. The results showed that the Si-based-surface micromachined
antenna does not have appropriate properties for antenna applications. However, by creating an air
gap between the substrate and the ground plane, the εr index can be improved, hence enlarging the
bandwidth, gain and the directivity parameters, and reducing the return loss by approximately 33.5%.
Further investigation using a glass-based-surface micromachined antenna revealed that the antenna
designed with a substrate of low εr index contributes to a good bandwidth parameter performance.
The S11 parameter showed a curve profile similar to that of a conventional RT/Duroid-based antenna
with a return loss increase of approximately 55.1% compared to the Si-based-surface micromachined
antenna. The analysis of the fabricated glass-based micromachined antenna showed a good agreement
with the simulation. It is concluded that the glass-based antenna can be considered as an alternative
front-end device for an integrated RF energy harvesting system.
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