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Abstract: The estimation of solar radiation for planning current and future periods in different fields,
such as renewable energy generation, is very important for decision makers. The current study
presents a hybrid model structure based on a multi-objective shark algorithm and fuzzy method
for forecasting and generating a zone map for solar radiation as an alternative solution for future
renewable energy production. The multi-objective shark algorithm attempts to select the best input
combination for solar radiation (SR) estimation and the optimal value of the adaptive neuro-fuzzy
inference system (ANFIS) parameter, and the power parameter of the inverse distance weight (IDW) is
computed. Three provinces in Iran with different climates and air quality index conditions have been
considered as case studies for this research. In addition, comparative analysis has been carried out
with other models, including multi-objective genetic algorithm-ANFIS and multi-objective particle
swarm optimization-ANFIS. The Taguchi model is used to obtain the best value of random parameters
for multi-objective algorithms. The comparison of the results shows that the relative deviation index
(RDI) of the distributed solutions in the Pareto front based multi-objective shark algorithm has the
lowest value in the spread index, spacing metric index, favorable distribution, and good diversity.
The generated Pareto solutions based on the multi-objective shark algorithm are compared to those
based on the genetic algorithm and particle swarm algorithm and found to be the optimal and near
ideal solutions. In addition, the determination of the best solution based on a multi-criteria decision
model enables the best input to the model to be selected based on different effective parameters.
Three different performance indices have been used in this study, including the root mean square
error, Nash–Sutcliffe efficiency, and mean absolute error. The generated zone map based on the
multi-objective shark algorithm-ANFIS highly matches with the observed data in all zones in all case
studies. Additionally, the analysis shows that the air quality index (AQI) should be considered as
effective input for SR estimation. Finally, the measurement and analysis of the uncertainty based
on the multi-objective shark algorithm-ANFIS were carried out. As a result, the proposed new
hybrid model is highly suitable for the generation of accurate zone mapping for different renewable
energy generation fields. In addition, the proposed hybrid model showed outstanding performance
for the development of a forecasting model for the solar radiation value, which is essential for the
decision-makers to draw a future plan for generating renewable energy based solar radiation.
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1. Introduction

The Sun is considered a fundamental resource for most physical and chemical processes on Earth.
Thus, processes related to the Sun are important for researchers [1,2]. The application of solar energy
for different aims as a renewable energy source is an important priority for researchers [3]. Renewable
energy technologies are fast becoming more effective and cheaper and their application is widely
growing. Solar radiation is one of the most important resources of renewable energy [4]. In fact, the
wide application of solar energy as renewable energy can decrease greenhouse emissions. Renewable
energy, such as solar radiation, has a low effect on the environment. In this context, decision makers
should know the available solar radiation in order to be able to identify the expected generation of
renewable energy. Therefore, the development of an accurate forecasting model and generation of
zone mapping for solar radiation is of vital importance for decision-makers. In addition, with the
world becoming warmer, renewable energies can balance the ecological conditions and the production
of domestic power can be carried out based on the use of solar energy [5,6].

In fact, Solar Radiation (SR) affects climate processes, and agricultural production is governed by
solar energy [7]. SR is necessary for plant growth, photosynthesis, and regulation of the growth duration.
The estimation of SR has many applications in different fields, including agricultural engineering,
building engineering, the energy and hydrology fields, and power and heat production [8]. For example,
the accurate estimation of irrigation is considered an important issue for irrigation planning and
design [9]. Additionally, SR is considered an important issue for evaporation computation [10]. Thus,
access to solar data and an accurate model for the prediction of SR data are important for the leverage of
the solar energy potential in particular locations. There are different empirical models and equations for
SR estimation. These models are highly important because of the economic limitation and measurement
complexity of SR estimation in some locations, rendering empirical models suitable for radiation
estimation [11]. Additionally, remote sensing and satellite images can be considered effective tools for
solar energy estimation. However, these empirical models require various parameters that might be too
complex to be accurately estimated in some locations. In addition, some models cannot provide a good
estimation of SR under changing climate conditions and other conditions [12]. The station height from
sea level, longitude, latitude, relative humidity, and pollution accumulation in the atmosphere affect
radiation estimations. Thus, the pollution content is an important and influential issue affecting SR,
and the application of accurate tools for radiation estimation under the effect of different parameters
is very important for decision makers [13]. Soft computing methods can be effective as powerful
tools based on large data sets because these methods can accurately simulate hydrological or other
variables. These methods can effectively adapt to climate and hydrological boundaries, decrease
the computational time, and ensure high accuracy in hydrological predictions [14]. In addition, soft
computing methods can be effective tools for estimating SR when different parameters, such as particle
pollution, temperature, humidity, etc., have a significant effect on SR [15]. The present study attempts
to simulate the SR in East Azarbayejan in Iran in some stations in the presence of particle pollution. The
current article presents self-organizing maps (SOMs) with a multi-objective shark algorithm (MOSA),
and the fuzzy method is applied to select the optimal input combinations, identify the best value of the
ANFIS parameters, and generate the spatial distribution of SR. The SOM is used as a clustering method
to identify impactful spatial SR values, and the results are compared with those obtained using the
multi-objective genetic algorithm (MOGA) and multi-objective particle swarm optimization (MPSO).
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2. Background

An ANN model based on different numbers of inputs in different cities in Turkey was previously
used to simulate SR [16]. The results indicated that using a pre-selection procedure is necessary for
the determination of the inputs because the elimination of some input parameters could significantly
decrease the accuracy of the models. The ANN used for different climate change conditions had
acceptable performance for SR based on the accuracy of the parameter selection.

Another study simulated the monthly and daily total global SR based on an artificial neural
network (ANN) [17]. The soil temperature, wind speed, temperature, and mean monthly rainfall were
used to estimate SR. The results indicated that the mean absolute percentage error (MAPE) based on
the ANN was approximately 5.34% and that the ANN method decreased the MAPE compared with
the output of the regression method with a high correlation.

The auto regressive moving average mode (ARMA) and multi-layer perceptron (MLP) have been
used as hybrid models to simulate hourly SR [18]. The results indicated that the hybrid model had a
lower root mean square error (RMSE) than the simple MLP model, and the necessary data for this
research were obtained based on a numerical weather simulation model.

A regression model was used to estimate hourly SR values [19]. The relative humidity, atmospheric
pressure, air pollution index, and mean rainfall were used as inputs in the models. The results indicated
that the models incorporating the air pollution index could produce a relatively accurate estimate of
SR with a high Nash–Sutcliffe efficiency value and a small RMSE value.

The daily SR has also been predicted by a support vector machine (SVM) [20]. The SVM method
was used based on the sunshine ratio as an effective input, and the results were compared with
those obtained using empirical models. Compared to the empirical models, the SVM models could
significantly reduce the relative error and provide more accurate predictions of the winter season.

Vakili et al. [21] simulated the daily SR based on an ANN while considering the suspended
particulate matter. The temperature, rainfall, humidity, and suspended particle characteristics were
used to simulate SR in Tehran Province, Iran, and the results indicated that compared to the other
applied methods’ input structure, the ANN considering the suspended particles could simulate SR
with the lowest error in terms of the RMSE and mean absolute error.

The hourly global horizontal irradiance (HGI) was estimated based on Meteosat imagery and
an ANN [22]. The data were obtained from a radiometric station. The Heliosat-2 model was
used to compare the results with those obtained using an ANN. The results obtained by the ANN
based on different sky conditions had a significantly lower RMSE value than those obtained by the
Heliosat-2 model.

Celik et al. [23] applied an optimized ANN for SR estimation over the Eastern Mediterranean.
The results indicated that the daily SR could be predicted based on the optimized ANN with high
accuracy such that the optimized model could accurately determine the number of hidden neurons
and weights in the ANN, and the RMSE was decreased by approximately 10% to 12% compared to
that obtained using regression methods.

A moderate-resolution imaging spectroradiometer (MODIS) and an ANN have also been used to
obtain SR estimates [24]. Land surface temperature (LST) data were used as input data to the ANN,
and the results indicated that the relative error of the ANN was 5.35%, while the error of the regression
models was 10.23%.

The new daily SR model (NDSRM) using the air quality index (AQI) was applied in multiple
cities [25]. The results differed according to whether the AQI was added or removed from the inputs
such that the predicted SR based on the elimination of the AQI in some cities had high accuracy,
whereas the model accuracy depended on the AQI value as input in other cities.

The ANN model and inverse distance weight (IDW)-based model were used to simulate SR
at distances greater than 50 km [26]. The results indicated that the IDW model had an RMSE of
approximately 6.4%, while the RMSE of the ANN model was 5.11%, and the IDW model was simpler
and more accurate than the ANN model.
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Yoe et al. [25] applied the SVM to SR estimation based on the air quality index. The results
indicated that the Nash–Sutcliffe efficiency varied from 0.682 to 0.740, and the models with the AQI
input provided a higher accuracy in solar estimation than those without this input.

The daily SR considering the air quality index was simulated by a support vector machine (SVM)
in a large region with different climates [2]. The results indicated that the elimination of the AQI input
among the other inputs could significantly decrease the accuracy of the estimation model; the SVM
featured a high accuracy, and simple structures were found to have a high ability to absorb SR.

Fan et al. [27] applied an SVM for SR estimation while considering atmospheric particulate matter
(PM). Daily metrological and air pollution data were used to simulate SR. The inclusion of PM with a
diameter of 2.5 micrometres (PM 2.5), PM 10, and O3 in the input combinations were considered the
best combination of inputs and improved the results of the SVM.

Furthermore, many research efforts have attempted to simulate SR based on soft computing
methods under different conditions, such as using air pollution data. Different air quality indexes
have been used to evaluate the air quality, such as the air pollution index (API) and air quality index
(AQI) [28]. The AQI is used to provide a daily evaluation of the air quality. This index is used to
present the air quality to the population while focusing on the respiratory effects that can be observed
some hours or days after exposure [29]. The AQI is computed based on models or air monitors
considering nitrogen dioxide, ozone, carbon monoxide, and sulfur dioxide [30]. This index ranges from
0 to 500, which is divided into different classifications, and each classification is related to different
levels of human health. The country of Iran experiences considerable air pollution in different cities;
this air pollution is usually measured and evaluated with the index, and the classification changes
accordingly [31]. For example, when the index value is within the range of 0 to 50, the air quality is
good, and when the index value is greater than 300, the air quality is very dangerous. A literature
review of the pollutant particle effect on SR shows that several studies have considered the effect of air
quality on SR [31].

Thus, the main purpose of the current paper is to evaluate the effect of air quality on SR using
soft computing models to provide a comprehensive discussion concerning the influences of the air
quality on the accuracy of SR prediction. In this study, the ANFIS model was selected as the soft
computing method because ANFIS is suitable for predicting stochastic nature variables, such as SR.
However, in the ANFIS model procedure, there is a need to initialize a few internal parameters that
are usually selected using the trial-and-error process. The selection of the optimal values of these
parameters significantly affects the accuracy of the model performance. In this context, there is a need
to optimize the value of the ANFIS’s internal parameter to ensure an acceptable level of prediction
accuracy. In fact, the shark algorithm is widely accepted and has been successfully applied in the fields
of water resources and power generation, mathematical simulations, the design of trusses, and other
fields [32,33]. Therefore, the shark algorithm is used as an effective optimization tool to obtain the
optimal parameters for the ANFIS. The rotational movement of the shark in this algorithm improves
the ability to search for the global optima of the ANFIS’s internal parameters. The proposed integrated
adaptive neuro-fuzzy inference system with multi-objective shark algorithm (ANFIS-MOSA) model
was examined in SR prediction in three different case studies. In addition, comprehensive analyses
were carried out to compare the proposed model to other models.

3. Materials and Methods

3.1. Fuzzy Method

The ANFIS model, which is based on large amounts of data, can accurately simulate different
variables, such as hydrological parameters, water quality parameters, climate parameters, and other
parameters. The following six layers are used in the ANFIS:

• The first layer with inputs x and y is connected to the neurons in the adjacent layer.
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• The nodes in layer 2 constitute the fuzzification layer, and this layer includes an adaptive node
that has a function. The fuzzy membership function is computed in this layer as follows:

Q1,i = µAi(x1), for(i = 1, 2.., ..)
Q2,i = µBi−2(x1), for(i = 1, 2.., ..)

. (1)

There are different types of membership functions, and the following bell function has been widely
used with successful applications in previous research:

µAi =
1

1 +
( x−ci

ai

)2bi
, (2)

where ai, bi, and ci are premise parameters that can be obtained based on the optimization process.

• The firing strength (wi) is computed in the third layer as follows:

Q2,i = wi = µAi(x).µB(y). (3)

Each node in the fourth layer computes the ratio of the firing strength of the membership rules to the
firing strength of the total number of rules. The output is computed based on the following equation:

Q3,i =
wi∑

wi
=

wi
w1 + w2

= wi. (4)

• Each node in the fifth layer is considered an adaptive square node with a node function:

Q4,1 = wi fi = wi.(pix ++qiy + ri), (5)

where pi, qi, and ri are considered the consequent parameters.
• The overall output in the sixth layer is computed based on signals received from the defuzzification

layer and the following equation:

Q5,1 =

∑
wi fi∑
wi

= fout. (6)

However, the consequent parameters and premise parameters should be determined accurately,
and an optimization algorithm can obtain the accurate value of these parameters if the initial estimates
of the parameter values are inserted into the algorithms as decision variables.

3.2. Shark Algorithm (SA)

The shark algorithm acts based on smell receptors in idealized sharks. The algorithm, which
features a simple structure, high flexibility, resistance to trapping in local optima, and fast convergence,
has been successfully applied in the fields of water resource management, reservoir operation, and
power generation. The initial positions of the sharks are considered decision variables based on the
following equation [34]:

Xl
i =

[
x1

il, x2
il, . . . , xND

il

]
, (7)

where x1
il is the jth dimension of the ith shark position, ND is the number of decision variables, and Xl

i
is the initial shark position. The SA has the following three main assumptions:

• The injured fish are considered prey to the sharks, and the movement velocity of the fish is very
low compared to the shark velocity due to their injuries. The sharks find the fish locations by
detecting blood from the injured fish.
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• Blood is regularly emitted from the fish bodies, and the water flow has a negligible effect on the
blood emission and movement in the water. When the number of blood particles around the
injured fish is considerable, the smell receptors of the shark can detect the blood odor, and the
shark moves to the location of the fish.

• Each injured fish is considered one blood source.

Sharks moving in water have a specific velocity [34] as follows:

Vl
i =

[
v1

i,l, vl
i,2, . . . , vND

il

]
, (8)

where v1
il is the jth dimension of the ith velocity position, ND is the number of decision variables, and

Vl
i is the initial shark velocity.

The shark velocity varies based on the detected smell intensity, and when sharks detect a higher
odor concentration, they rapidly move in the direction of the target. If the variation in the odor
concentrations is considered a gradient of the objective function, the velocity varies according to the
gradient of the objective function based on the following equation:

Vk
i = ηk.R1.∇(OF)

∣∣∣∣Xk
i
, i = 1, . . .NP, k = 1, . . . , kmax, (9)

where OF is the objective function, k is the stage number, NP is the population size, ηk is a random
value between 0 and 1, and R1 is a random value. The forward movement of the sharks is based on
the k number stage such that the maximum number stage equals kmax. The sharks are subjected to an
inertial limitation, and thus, they move at a specific velocity as follows:

vk
i, j = ηk.R1.

∂(OF)
∂x j

|x j,k + αkR2vk−1
i, j , (10)

where αk is a momentum coefficient between 0 and 1, and R2 is a random value. A momentum rate
with a higher value indicates greater inertia, and thus, the current velocity strongly depends on the
previous velocity. The normal velocity of a shark is 20 km/hr, and the maximum velocity of a shark is
80 km/hr; thus, there is a limitation to the velocity based on the following equation:∣∣∣∣vk

i, j

∣∣∣∣ = min
[∣∣∣∣∣∣ηk.R1.

∂(OF)
∂x

∣∣∣∣∣∣+ αk.R2.vk−1
i, j |,

∣∣∣∣βk.vk−1
i j

∣∣∣∣], (11)

where βk is the velocity limiter. The new shark position is computed based on the following equation:

Yk+1
i = Xk

i + Vk
i ∆tk, (12)

where Yk+1
i is the new shark position, and ∆tk is the time interval. The rotational movement of the

shark is considered a local search to find the best solution based on the following equation:

Zk+1,m
i = Yk+1

i + R3Yk+1
i , (13)

where R3 is a random number, M is the total number of points in the local search and rotational point,
and m is the number of each rotation level. In fact, there are M points around Yk+1

i ; thus, the sharks
manifest rotational movement around these points. Then, the sharks select the best position based on
the obtained Yk+1

i positions and Zk+1,m
i positions.
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3.3. Multi-Objective Algorithms

An optimization problem can have one or more objective functions. The framework of a
multi-objective function can be defined based on the following equation [35]:

Min
→

f j
(
→
p
)
, j = 1, .., m

subject, to : gi
(
→
p
)
≤ bi

l
→

b ≤
→
p ≤ u

→

b

(14)

where
(
→
p
)
= (p1, .., pn) is the solution vector, fj is the jth objective function, m is the number of objective

functions, l is the number of constraints, u
→

b and l
→

b are the upper and lower constraints, respectively,
and gl and bl are the ith constraints related to the right-hand side.

When the problem has one objective function, the solutions based on different methods can be
easily compared, but the domination concept should be used when two objective functions can be
identified for the problem. The solution,

→
p , dominates the solution,

→
q , if the following is satisfied with

the problem:

→
p �

→
q :

[
∀ j ∈ {1, . . . , m}

∣∣∣∣ f j
(
→
p
)
≤ f j

(
→
q
)]

&
[
∃ j ∈ {1, . . . , m}

∣∣∣∣ f j
(
→
p
)
< f j

(
→
q
)]

. (15)

The Pareto front includes solutions such that any other solution cannot dominate the Pareto set in
the problem space. The optimal Pareto front is used to define the objective function values based on
the following equation:

PF =
[
→
p ∈ U

∣∣∣∣→q ∈ U :
→
q �

→
p
]
, (16)

POF =
{

f j
(
→
x
)∣∣∣∣→x ∈ PF

}
. (17)

The main aim of the problem is related to identifying the Pareto front with the highest diversity.
A set of non-dominated solutions for the multi-objective problem is selected, and the decision maker
selects one solution as the best solution based on an accurate evaluation.

3.4. Multi-Objective Shark Algorithm (MOSA)

The shark positions in the MOSA are considered solutions to the problem, and these positions are
generated randomly at the initial level of the MOSA. The non-dominated solutions are saved in an
archive and generate a POF. Then, the equality of the solutions is investigated based on a computation
of the objective function. The non-dominated sharks in the new archive are computed and recorded in
an archive. The following aspects of the archive should be considered:

• If the new solution is dominated by at least one current solution in the archive, the new solution is
not inserted into the archive.

• If the new solution dominates over older solutions, the non-dominated solutions are eliminated,
and the new solution is inserted into the archive.

• If no new solutions or current solutions in the archive can dominate each other, the new solutions
are added to the archive.

Several hypercubes are produced by dividing the objective function spaces by a grid-based
mechanism. When the archive size exceeds the capacity, additional sharks should be eliminated from
the archive. Hypercubes with a relatively low density are important for the generation of a uniform
distribution, and elimination can occur in areas with greater hypercube crowding.
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3.5. Non-Dominated Sorting Genetic Algorithm (NSGA)

NSGA
∏

was generated by Deb [36]. A random population based on generation chromosomes is
considered in the first level of NSGA

∏
. The children chromosomes are generated based on crossover

and mutation operators, and their objective function is computed. Then, the combination of the parent
and children populations is divided over the fronts based on non-dominated sorting as described by
Deb [36]. The crowding distance of each member is computed, and the population is sorted based on
this index. Then, the combined population after the sorting mechanism is truncated, such as the parent
population, and a new population is prepared to produce a child population. After a ranking process,
the first-ranked solution represents the best solution.

3.6. Multi-Objective Particle Swarm Optimization (MPSO)

If the problem space is considered with d dimensions and particles, the ith position particle at the
ith position, Xi(xi1, .., xid), has a velocity of Vi = (vi1, .., vid). The best performance of each particle in
the swarm is Pi(pi1, .., pid) [37]. Each particle attempts to improve its position, velocity, and distance
with respect to the best particle. The position and velocity of the particles are updated based on the
following equations:

Vt+1
i = ωVt

i + c1r1
(
xpbest −Xt

i

)
+ c2r2

(
xgbest −Xt

i

)
Xt+1

i = Xt
i + Vt

i
, (18)

where ω is the inertia coefficient, xgbest is the global best output of the particle, xpbest is the personal best
output of the particle, c1 is the cognitive acceleration coefficient, c2 is the social acceleration coefficient,
r1, r2 are random numbers, Vt+1

i is the velocity at time t + 1, and Xt+1
i is the position at time t + 1.

The MPSO algorithm encounters a set of solutions as a Pareto front [38]. The archive of a
non-dominated solution is considered in the solutions developed at each level. First, the initial position
and velocity of the particles are considered in the MPSO, and their objective function is computed [39].
Then, the leader is selected from the archive as the particle with the best objective function value such
that each particle follows one leader in the archive, and the velocity and position of each particle are
updated. The objective function of the new positions and velocities is computed. If the new solution
can dominate over xpbest, the new solution is inserted into the archive instead of xpbest. An efficient
mutation strategy for increasing diversity can be considered at this level and applied to the particles.
One of the objective functions is selected for the level mutation, and then, the particles are sorted in
descending order at this level based on the objective function computation. The crowding distance of
the particles in the archive is computed, and sorting is performed in descending order. Then, elitist
mutation is applied to a predefined number of available solutions in the archives. The convergence
criteria are checked, and if the criteria are not satisfied, the system returns to updating the velocity and
position and determining whether the algorithm has completed.

4. Case Study

The current study considers SR over Ardebil, Gilan, and East Azarbayejan. East Azarbayejan has
an area of approximately 47,830 km2 (Figure 1). The northern extent of East Azarbayejan is a part of the
Republic of Azarbayejan and Armenia. Zanjan Province is located in the south of this province, and
the Sahand Mountain, which has a height of 3707 m, is one of the highest points in the province. The
annual temperature from 2008 to 2018 ranged between 25 and −15 ◦C. This province is located between
the longitudes of 45◦0′ E and 47◦50′ E and latitudes of 36◦50′ to 39◦50′. This province is mountainous
as follows: 40% of the province area has mountainous conditions. The climate in this province is cold
and dry, but the different topographies cause variations in the climates. The maximum temperature,
precipitation, and number of sunny hours obtained from three stations, i.e., Ahar (longitude: 47◦48′

and latitude: 38◦28′), Bonab (longitude: 45◦70′ and latitude: 37◦20′), and Sarab (longitude: 47◦23′

and latitude: 37◦51′), were considered. Additionally, the AQI values at these 3 stations or cities were
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obtained based on air quality monitoring. Ardebil Province occupies an area of approximately 3.17 km2

between the longitudes of 47◦00′ E and 48◦50′ E and latitudes of 37◦00′ N to 40◦00′ N. Different climates,
such as Mediterranean, moderate Mediterranean, and mountainous climates, can be observed in this
province. The average annual precipitation in this province is 462.5 mm, and the annual temperature
varied between −3 ◦C (minimum temperature) and 34 ◦C (maximum temperature) from 2008 to 2018.
The following three stations in this province were used to characterize the temperature, precipitation,
sunny hours, and AQI data: Ardebil station (longitude: 47◦29′ and latitude: 38◦00′), Ebrahimabad
(longitude: 48◦29′ and latitude: 38◦22′), and Phyroozabad (longitude: 48◦20′ and latitude: 37◦59′).
Gilan Province is located in the north of Iran within the boundary demarcated by these stations.
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Figure 1. Location of case study (a) East Azarbayjan, (b) Ardebil, and (c) Gilan.

A moderate climate is observed in this basin. The area of this province is 14,044 km2, and the
average annual precipitation varied from 1200 to 1800 mm during the period from 2008 to 2018. The
climatology-oriented Rasht Institute (longitude: 49◦39′ and latitude: 37◦12′), Anzali (longitude: 49◦39′

and latitude: 38◦20′) and Astara (longitude: 48◦51′ and latitude: 38◦21′) are used to record the different
data. The AQI at the different stations is computed based on the following equation:

I =
Ihigh − Ilow

Chigh −Clow
(C−Clow) + Ilow, (19)
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where I is the air quality index, C is the pollutant concentration, Clow is the concentration extreme
equal to or lower than C, Chigh is the concentration extreme equal to or greater than C, Ihigh is the index
breakpoint related to Chigh, and Ilow is the index breakpoint related to Clow. Table 1 shows the different
classifications of AQI (Air Quality Index).

Table 1. Classification of the AQI index.

Air Pollution Level AQI Index Value

1 excellent 0–50
2 good 51–100
3 Lightly polluted 101–150
4 Moderately populated 151–200
5 Heavily polluted 201–300
6 Severely polluted >300

Figure 2 shows the average AQI during different months in Ardebil, East Azarbayejan, and Gilan
Provinces. Clearly, the greatest variation in East Azarbayejan can be observed in January as follows:
The minimum AQI in January is 46, and the maximum value is 74. The lowest variation in East
Azarbayejan is observed in May (minimum AQI = 60 and maximum AQI = 62). The highest AQI value
is observed in March (AQI = 79.5) in East Azarbayejan, and the lowest AQI value in East Azarbayejan
Province (EAZP) occurs in April. This index in EAZP shows that the first quartile and third quartile in
most months exhibit an AQI > 50, and the conditions appear to differ only in April. The other values
of the AQI index can be observed in the other provinces.
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Table 2 shows the variation in the average temperature during the different months during the
period of 2008–2018. July exhibits the greatest variation based on the high value of the variation
coefficient in Azarbayejan (EAZP), and the maximum temperature in this province occurs during
this month. The minimum temperature in Ardebil Province (AP) occurs in January, and the greatest
variation in this province can be observed in May. The other details are listed in Table 2. Figure 3 shows
the precipitation values in the different provinces. For example, the highest precipitation value in AP
occurs in March, and the greatest variation in precipitation in AP is observed in this month. The lowest
precipitation value in AP occurs in December. The other details of the other provinces are shown in
Figure 3. Additionally, the number of sunny hours at different stations is shown. For example, the
number of sunny hours (NSN) in June in Gilan Province (GP) is as follows: The most variation in the
NSN occurs in June, and the lowest variation can be observed in July. The other details are shown
in Figure 3.

Table 2. Temperature variation for the different months (2008–2019).

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Max. Temp. ◦C 2 4 10 12 19 28 31 18 17 14 9 8
Min. Temp. ◦C −8 −2 6 8 10 16 15 10 10 9 5 3

Variation Coeff. ×10−2 0.34 022. 0.12 0.10 0.31 0.35 0.44 0.30 0.27 0.21 0.20 0.32
Ardebil

Max. Temp. ◦C 1 5 12 14 23 27 32 17 18 15 7 6
Min. Temp. ◦C −7 −3 7 9 11 19 23 9 12 10 2 5

Variation Coeff. ×10−2 0.31 0.24 0.32 0.28 0.45 0.34 0.21 0.18 0.17 0.12 0.11 0.11
Gilan Province

Max. Temp. ◦C 6 7 14 15 22 28 33 18 19 17 8 7
Min. Temp. ◦C −5 −2 9 10 15 16 23 12 14 12 3 2

Variation Coeff. ×10−2 0.31 0.30 0.28 0.23 0.26 0.39 0.31 0.28 0.15 0.12 0.10 0.10Energies 2019, 12, x FOR PEER REVIEW 12 of 27 
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Figure 3. (a) Monthly temperature for the 2008–2018 in EAZP, (b) monthly temperature for the
2008–2018 in AP, (c) monthly temperature for the 2008–2018 in GP, (d) monthly number of sunny hours
for the 2008–2018 in EAZP, (e) monthly number of sunny hours for the 2008–2018 in AP, (f) monthly
number of sunny hours for the 2008–2018 in GP.
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The inverse distance weight (IDW) method was used to obtain the SR in the different zones. This
method has an effective feature allowing the optimal value to be obtained based on a multi-objective
optimization framework as follows:

z∗ =

n∑
i=1

1
Dq

i
zi

n∑
i=1

1
Dq

i

, (20)

where z∗ is the estimated precipitation at each point, Di is the difference between the predicted and
observed data, and q is the power parameter.

Three objective functions are considered in the ANFISmulti-objective optimization algorithm [40].
The obg function is considered to select the best input parameters for the ANFIS, and the RMSE is
used as an objective function to obtain the best value of the ANFIS parameters. The general standard
deviation (GSD) is used to obtain the optimal power parameter for the IDW:

Minimize(obg) =
(NOtrain−NOvalTest

NOtrain−NOvalTest

)
+ RMSEtrain+MAEtrain

Rtrain+1
+

( 2NOvalTest
NOTrain+NOValtest

)RMSEValTest+MAEValTest
RvalTest+1

RMSE =

√
1
p

p∑
i=1

(Ti −Oi)
2

MAE = 1
p

p∑
i=1
|Ti −Oi|

R =
P

p∑
i=1

TiOiP
p∑

i=1
T2

i −

( p∑
i=1

Ti

)2−P
p∑

i=1
O2

i −

( p∑
i=1

Oi

)2
GSD = RMSE

Z

(21)

where NOtrain is the training data number, RMSEtrain is the root mean square error of the training data,
RMSEValTest is the root mean square error of the test data, MAEtrain is the mean absolute error of the
training data, MAEValTest is the mean absolute error of the test data, Rtrain+1 is the correlation coefficient
of the training data, RvalTest+1 is the correlation coefficient of the test data, Ti represents the simulated
data, Z is the average value of the simulated data at different points, and Oi represents the observed
data. Lower RMSE, MAE, and GSD values are considered better. First, the ANFIS model is considered
based on the initial estimates of the linear and nonlinear parameters, and different components (Ns:
Number of sunny hours, Tmax(t−3): Maximum temperature with a three-month lag, Tmax(t−6): Maximum
temperature with a 6-month lag, Tmin(t−3): Minimum temperature with a three-month lag, Tmin(t−6):
Minimum temperature with a six-month lag, Rainfall(t−3): Precipitation value with a three-month lag,
Rainfall(t−6): Precipitation value with a six-month lag, and the AQI indexes) are used as inputs. The
ANFIS simulates the results. The IDW is used to simulate SR in the different zones, and then, the
Multi-Objective Shark Algorithm (MOSA) is used based on the initial population used for the selection
of inputs, the optimal determination of the adaptive neuro-fuzzy inference system (ANFIS) parameters,
and the selection of the power parameters for the IDW. As shown in Figure 4, the different operators
apply the candidate solutions, and then, these solutions are returned to the ANFIS subroutine for
another simulation iteration. If the stopping criteria are satisfied, the process finishes with the optimal
results. The modified technique for order preference by similarity by the ideal solution (M-TOPSIS) is
used to select the best solution from the Pareto form based on the following equations:
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D+
j =

√
n∑

j=1

(
xi j − x+j

)2

D−j =

√
n∑

j=1

(
xi j − x−j

)2

R∗j =

√[
D+

j −min
(
D+

j

)]2
+

[
D−j −max

(
D−j

)2
] (22)

where xj
+ is the ideal solution (largest maximization criterion value or smallest minimization criterion

value), xj
− is the negative ideal solution (largest minimization criterion value or smallest maximization

criterion value), D+
j is the distance from the ideal solution, D+

j is the distance from the least ideal
solution, xij represents the results of alternative i considering criterion j, and R∗j is the similarity ratio,
and this index of the solution is sorted by descending values to show the rank of each solution.Energies 2019, 12, x FOR PEER REVIEW 14 of 27 
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Additionally, the following indexes are used to select the best multi-objective algorithm:

• Cover Surface (CS)

This index presents the relative score of the solutions in set B that are weakly dominated by set A
as follows:

CS(A, B) =
|{b ∈ B|∃a ∈ A : a ≤ b}|

|B|
(23)

If the index value equals 1, all solutions in set B are weakly dominated by those in set A, and if the
index value equals −1, any solution in set B is dominated by the solutions in set A. However, the index
value can have values other than 1 and −1, which could indicate that the number of solutions in set A
is covered by those in set B.

• General Distance (GD)

This index shows the closeness value of the computed Pareto solutions to the true Pareto solution.
If Q is considered a set obtained by the MOSA, the GD is computed based on the following equation:
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GD =

(
|Q|∑
i=1

dp
i

) 1
p

|Q|

di =
|P∗|

min
k

√∑(
f i
m − f ∗km

)2
, (24)

where P* is a reference solution (a set of all possible true Pareto solutions), dp
i is the distance of the

solution obtained by the algorithm to the best solution, and f ∗km is the m-objective value of the kth
member of P*. A lower value of this index is more favorable for decision makers.

• Spread Index (SI)

The SI presents the diversity value of the obtained and archived solutions among the
non-dominated solutions.

∆ =

M∑
m=1

de
m +

N−1∑
i=1

∣∣∣∣di − d
∣∣∣∣

M∑
m=1

de
m + (N − 1)d

, (25)

where di is the Euclidean distance between successive solutions among the obtained non-dominated
solutions, d is the average of all distances di, N is the number of solutions in the best non-dominated
front, and de

m is the computed distance of the extreme solution between the obtained Pareto of the moth

objective and the true optimal Pareto.

• Spacing Metric (SM)

This index is computed by measuring the distances of successive solutions in a non-dominated
front and shows an evaluation of the spread of vectors in the total set of non-dominated solutions.

S =

√√√
1
|Q|

Q∑
i=1

(
di − d

)2
, (26)

where di = mink∈Q∧k,i
M∑

m=1

∣∣∣ f m
i − f k

i

∣∣∣, d =
Q∑

i=1

di
|Q| and fik is the value of the ith objective function of the

kth member.

5. Discussion and Results of the Algorithm Parameters

5.1. Results of the Sensitivity Analysis

Evolutionary algorithms are usually initialized using random parameters to allow accurate
prediction values to be determined when these random parameters have been optimally selected. The
Taguchi model is used to set the values of the random parameters. Its advantages include decreased
time and cost in the selection of effective parameters with respect to the results. The selection of an
orthogonal array is important for the Taguchi model. Table 3 shows the effective parameters of each
algorithm. For example, the MOSA has four effective parameters with four levels, and the other details
of the other algorithms are also shown. Then, the relative deviation index (RDI) is used based on the
computed CS, GD, SI, and SM values.
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Table 3. Level and effective parameters for MOSA, NSGAII, and MOPSO ( Multi objective particle
swarm algorithm.

MOSA

Parameter Level 1 Level 2 Level 3 Level 4
Population size 10 30 50 70

M 20 40 60 80
α 0.2 0.4 0.60 0.80
β 1 2 3 4

Parameter Level1 Level2 Level3 Level 4

NSGAII

Parameter Level 1 Level 2 Level 3
Population size 10 30 50

Mutation
probability 20 40 60

Crossover
probability 0.2 0.4 0.60

MOPSO

Parameter Level 1 Level 2 Level 3 Level 4
Population size 10 20 30 40
Inertia weight 0.2 0.40 0.60 0.80

Mutation
probability 0.05 0.10 0.15 0.20

C1 1.6 1.8 2.0 2.2
C2 1.6 1.8 2.0 2.2

In fact, this index shows the difference among the computed solutions with the best solution in
each index. Notably, the best solution in some indexes, such as the CS, is considered based on the
computed largest value of this index, and the best solution in other indexes, such as the GD, SI, and
SM, is computed based on the lowest value of the indexes.

RDI =
∣∣∣∣∣Algsol − Bestsol

Bestsol

∣∣∣∣∣× 100, (27)

where Algsol is the computed solution of each index, and Bestsol is the best computed solution of
each index.

When the RDI is computed for the CS, GD, SI, and SM, the product of a Wight parameter (WP)
and the computed RDI is obtained, and then, the products of the RDI and WP for the different indexes
are summed. The WP of the SC, GD, SI, and SM is 0.25 because the four indexes have the same priority
to decision makers, and the algorithm should satisfy all indexes. Then, Minitab software is used, and
the L9, L12, and L9 arrays of the MOSA, NSGAII, and MOPSO, respectively, are considered for the
model. The orthogonal array and results are shown in Table 4. The lowest CMRDI value shows that
the algorithm parameters can obtain the solutions with a small difference between the best solutions.
For example, the size population for the MOSA with level 2 has the lowest value among the levels,
and thus, the population size for level 2 equals 30. The best values of the other parameters can be
computed similarity. The best CMRDI value is shown in Table 4.
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Table 4. Computed results based on the computed average of the relative deviation index (CMRDI) for
MOSA, MOPSOA, and NSGAII.

MOSA

Population size
Level 1 Level 2 Level 3 Level 4

2.8 2.4 3.1 3.5
M

Level 1 Level 2 Level 3 Level 4
2.9 2.7 3.3 3.5

α
Level 1 Level 2 Level 3 Level 4

3.6 3.1 2.7 3.9
β

Level 1 Level 2 Level 3 Level 4
3.5 2.6 2.8 2.9

MOPSOA

Population size
Level 1 Level 2 Level 3

20 40 60
4.1 3.9 4.5

Mutation probability
Level 1 Level 2 Level 3

4.5 3.7 3.9
Inertia weight

Level 1 Level 2 Level 3
C1

Level 1 Level 2 Level 3
3.9 3.7 4.00

C2
Level 1 Level 2 Level 3

4.3 3.7 3.9

NSGAII

Population size
Level 1 Level 2 Level 3 Level 4

20 30 40 50
5.6 5.3 5.1 5.9

Mutation probability
Level 1 Level 2 Level 3 Level 4

6.2 5.6 5.8 6.2

Level 1 Level 2 Level 3 Level 4
6.3 6.1 6.7 6.9

5.2. Results of the Different Multi-Objective Algorithms

The three Pareto fronts of the three algorithms are shown in Figure 5. The results and discussion
were applied to Azarbayejan Province to avoid repetition. Additionally, when a large Pareto is obtained,
many points act as solutions, and thus, the methods are compared using a decreased number of
points for ease of presentation and to facilitate understanding (Table 5). A cluster method was used
in the current article. First, the N cluster is considered, and the distance between each cluster is
computed. The two clusters with the smallest distance are selected and combined to generate one
cluster, and this process continues until the number of clusters reaches the lowest probable value.
Linear programming is used to obtain each objective function value separately without considering
the other two objective functions. B, C, and A are the best values of the first objective function (F(1)
or GSD), the second objective function (F(2) or RMSE), and third objective function (F(3) or MAE),
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respectively. By comparing the nearest points of the different algorithm Pareto results to the mentioned
points (A, B, and C), in contrast to the cases of the other algorithms, the nearest point in the MOPSO can
obtain and match the optimal objective function separately. For the ease of comparison, the objective
function values are converted to values between 0 and 1. A, B, and C have the best optimal values for
the three objective functions, F(3), F(1), and F(2), respectively, based on the lowest values. Thus, the
value of the objective function of the ideal points is considered the closest value to 1; consequently, the
other points could be sorted and ranked. Additionally, the nearest points (NPs) to the reference points
A, B, and C in the MOSA, MOPSO, and NSGAII are shown by NPMOSA, NPMOPSO, and NPNSGAII,
respectively. Clearly, the NPMOSA has a good match with the best optimal objective function. For
example, the best value of F(1) based on the B point is considered equal to 1, and this value of NPMOSA
is 0.99; the other points are similar. In fact, when F(1) equals 1, the best objective function value of F(1)
can be observed in point B, and then, F(2) and F(3) are computed for this point. Clearly, when an ideal
point can satisfy one objective function, the value of the other objective functions at this point does not
have the best value. In addition, the results of the other two provinces are shown in Figure 5. Figure 6
shows the RDI percentage of the different indexes in Azarbayejan, and the values in Ardebil and Gilan
are not shown in this section to avoid repetition. The low RDI value shows better solutions and Pareto
for the multi-objective algorithms. Notably, the variation in the values of the different indexes in the
MOSA is smaller than that using the other two methods, and thus, the reliability of the generated data
based on the ANFIS-MOSA is higher than that of the other algorithms. Additionally, the minimum,
maximum, and median RDI in the box plots of the NFIS-SOMA have lower values than those based on
the other two algorithms. Thus, these results show that the formed Pareto for the ANFIS-MOSA has
good and diverse distribution in the space problem compared with that for the other two algorithms.
Notably, the input data in each separate province during different months are associated with separate
outputs per province.Energies 2019, 12, x FOR PEER REVIEW 18 of 27 
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Table 5. Comparison of the condition of the nearest point of each Pareto with the best values of each
objective function for Azarbayejan.

Model F(1) F(2) F(3)

Lingo (NLP) (B) 0.12 1 0.0.14
Lingo (NLP) (C) 1 0.75 0.50
Lingo (NLP) (A) 0.75 0.50 1

description

The value of first objective function
for the nearest points in the Paretos
to the ideal point of first objective

function

The value of second objective
function for the nearest points
in the Paretos to the ideal point

of first objective function

The value of the third objective
function for the nearest points
in the Paretos to the ideal point

of first objective function

(optimal value for F1) 0.99 0.75 0.50 0.62 0.50 0.27 0.86 0.33 0.50
NPSA NPPSO NPGA NPSA NPPSO NPGA NPSA NPPSO NPSGA

description

The value of first objective function
for the nearest points in the Paretos

to the ideal point of second objective
function

The value of second objective
function for the nearest points
in the Paretos to the ideal point

of second objective function

The value of third objective
function for the nearest points
in the Paretos to the ideal point

of second objective function
(optimal value for F2) 0.50 0.49 0.48 0.95 0.63 0.30 0.14 0.11 0.10

description

The value of first objective function
for the nearest points in the Paretos
to the ideal point of third objective

function

The value of second objective
function for the nearest points
in the Paretos to the ideal point

of third objective function

The value of third objective
function for the nearest points
in the Paretos to the ideal point

of third objective function
(optimal value for F3) 0.85 0.75 0.50 0.37 0.33 0.12 0.99 0.50 0.50
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5.3. SR Results

The previous section showed that the ANFIS-MOSA has better performance than the other two
models. There are initially 10 points representing the MOSA Pareto in Figure 5. The points are labelled
by a number such that point 1 is shown by the number 1, and the other numbers corresponding to the
other points are allocated such that the sixth point representing the MOSA and its Pareto is based on
the MTOPSIS. This index is based on the objective function value and the difference in the objective
function at each point between the most ideal and least ideal points. Then, the similarity ratio is
computed for each point, and the points are sorted based on the computed rank. Figure 5 shows the
best solution for EAZP, and the points are computed for other similar points such that each point
shows a combination of the input, the value of the q power, and the optimal values for the ANFIS
model. For example, the best point for the MOSA simulates SR with inputs (Ns: Number of sunny
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hours, Tmax(t−3): Maximum temperature with a three-month lag, Tmin(t−3): Minimum temperature with
a three-month lag, rainfall(t−3): Precipitation value with a three-month lag, and AQI indexes), and the
other points have different input combinations. Clearly, the best model or sixth point in the MOSA
Pareto and EAZP does not use all inputs, and thus, this model can obtain the best results with the
fewest number of inputs. Figure 7 compares the performance of 10 points in the ANFIS-MOSA, and the
Taylor diagram is based on the standard deviation, correlation, and distance from the reference point.
The numbers on the radius show the RMSE values. The performance of the sixth point in different
provinces shows better simulation results because it is closer to the reference point and, thus, shows
the best performance.
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Figure 8 shows the process variation of the RMSE, MAE, and NSE indexes for the 10 points in the
different provinces, and the locations of the points are determined on the three-dimensional graph.
Clearly, the sixth point has the lowest RMSE and MAE values and the highest NSE value. In fact, the
10 points show that 10 combination inputs were generated by the MOSA and that the sixth point has
the best input combination, best value of the ANFIS parameter, and best value of the power q for the
IDW. The locations of the points are shown in Figure 8. Stars show the points. Table 6 shows the
performance of the ideal solution of ANFIS and MOSA with and without the AQI input parameter. The
results show that the elimination of the AQI input parameter significantly increases the error index and
decreases the NSE because the elimination of this parameter enables the simulation of SR. Although
the dependency of the performance of models to AQI is variable for different studies, it is essential to
consider the AQI as one of the model inputs for solar radiation. This is due to the fact that there is a
strong interaction between the solar radiation value and air pollutant and visa-versa. For example,
airborne particulate and gaseous pollutants decrease the amount of solar radiation reaching the Earth's
surface. In contrast, ultraviolet (UV) radiation is necessary to initiate a series of reactions that cause
high urban ozone values. Understanding the interaction between solar radiation and air pollution is
especially important from the viewpoint of collecting and utilizing solar energy as an alternate energy
source. Aerosols in the atmosphere can alter the solar radiation incident at the ground in two ways: By
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depleting the total energy and by changing the relative amounts of direct and diffuse radiation. At
urban sites, high aerosol concentrations reduce the total incident energy and alter the direct: diffuse
ratio. At rural locales, where anthropogenic aerosol burdens are smaller, the decrease in the direct
solar beam will be largely compensated by an increase in the diffuse flux. Photo-chemical pollutants,
which depend on UV radiation for their formation, also affect the amount of solar energy reaching the
ground. Ozone and the particles formed from photochemically induced gas to particle reactions cause
absorption and scattering of incident radiation. As a result, the air pollution is one of the most effective
parameters that influences on the expected value of the solar radiation. However, it is relatively
difficult to understand the real interrelationship between them mathematically. In addition, in most
case studies, the data for air pollution is not available. Therefore, it is necessary while developing a
model for forecasting solar radiation to consider the air pollution as one of the major inputs to the
model. It can be obviously observed from Table 6 that the expected errors could be increased especially
if the pollution value has a high level.
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Figure 8. The tree generated three dimensional figure based on all solutions in Pareto with the
determination of 10 points of the Pareto solution in the ANFIS-MOSA model for (a) the test level in
EAZP, (b) test level in AP, and (c) test level in GP.

Table 6. Consideration of ANFIS and MOSA model with and without AQI for the best solution.

Index RMSE (Kwh/m2) MAE NSE

ANIFS-MOSA with AQI input 2.12 1.25 0.95
ANFIS MOSA without AQI input 2.98 1.71 0.90

Figure 9 shows the zone map based on the IDW and AQI in EAZPs for different seasons. The
Kappa coefficient is used as an index to show the degree of agreement between the observation zone
map and the obtained map based on the ANFIS and IDW. The Kappa values of SR in the winter,
autumn, summer, and spring are 0.85, 0.89, 0.91, and 0.92, respectively, highlighting the high accuracy
of the zone map. The zone map of winter shows a lower intensity in most areas of the map, and that of
summer shows a higher SR intensity.
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The analysis of the results shows that the AQI value in the winter season has a greater intensity
than that in the other seasons. In fact, the higher concentration of pollutant particles in the winter
season significantly increases the AQI value, and these particles decrease the SR intensity. Thus, if a
decision maker eliminates the AQI, the zone map of the SR in winter is drawn as a sample, and the
zone map shows higher SR in the different parts of the zone map in the winter. Thus, the elimination
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of the AQI significantly increases the SI, highlighting the importance of considering the AQI as an
input. Another point is related to the uncertainty of the simulated results because the input data and
the IDW method used for the zone map contain uncertainty; thus, the computation of the uncertainty
of the model is very important, and therefore, generalized likelihood uncertainty estimation (GLUE)
was used in this article. When the variation domain of the input parameters of the best solution in
the ANFIS and MOSA is determined, sampling is applied to the parameter space. First, the space
parameter is divided into the same interval, and then, sampling is considered for each interval [41].
Thus, when the gathered parameters are obtained and compared, a series of initial parameters is
prepared to be inserted into the ANFIS model. The sampling of data is repeated 10,000 times, and
then, the model based on the data group (generated sample) and the computation of the probability
value based on the observed data and simulated data are considered such that the input parameters
are generated based on 10,000 iterations.

The objective functions are computed for 10,000 iterations, and all SR simulated data are sorted
after arranging the objective function values. Then, 2.5% of the data of the upper limit and 2.5% of the
data of the lower limit are considered as outlying data. Thus, the bound of 95% of the certainty level is
considered, and the d factor shows the thickness bound (Figure 10).
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The p values show the percentage of data in the 95% boundary, and a higher percentage corresponds
to the better performance of each method. When the zone map based on the IDW is obtained, the
value, p factor, and d factor of the data from each area of the zone map are computed to show the
uncertainty value of the estimated results on the complete map. Clearly, the d factor is small, and the p
factor exhibits a good percentage of the maps (Figure 10).

6. Conclusions

The current paper aimed to simulate SR based on the ANFIS-MOSA, and the IDW was used to
obtain zone maps of three provinces. Pareto solutions were obtained using different algorithms and the
ANFIS model. The different indexes showed that ANFIS-MOSA performs better than the other models,
and the low value of the RDI index showed that the Pareto obtained using the MOSA and ANFIS
matched well with the ideal solution. The MTOPSIS model was used to select the optimal solutions,
and different indexes, such as the RMSE, MAE, and Taylor diagram, showed that the obtained ideal
solution performance was the highest for the Pareto solution with a significant difference. Then, the
effect of the AQI parameter on the results was analyzed. The results showed that the elimination of
the AQI parameter decreased the accuracy of the zone map. Additionally, different models with and
without the AQI parameter were considered, and the results showed that the error index without the
AQI parameter was significantly higher. Finally, the uncertainty of the obtained data was considered
to determine its effect on the results, and the high p factor value and low d factor value illustrated the
adequate performance of the proposed model. The proposed model can not only simulate SR with
an acceptable level of accuracy but also add a new direction to include multi-objective functions to
evaluate the performance of the prediction model. For example, to improve the performance of the
proposed model, another objective function could be considered to represent the risk performance,
such as experiencing ±maximum errors. In this context, an objective function that represents the risk
performance could be added to address the probability occurrence of the ±maximum errors at any
time during the span of the prediction time.

In fact, the current research focused on studying the performance of the proposed model
considering the time period dimension. However, there is an important dimension that could be
considered for further analysis, which is the importance of a certain parameter at a specific location. In
this context, it is essential to recommend this direction of research to be carried out in future research.
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Abbreviations

AQI air quality index
a,b,c premise parameters
C1 cognitive coefficient
C2 Acceleration coefficient
CS Cover surface
d Euclidean distance
GD General distance
IDW inverse distance weight
K Number of iteration
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M the number of point
NO number of training data
ND Number of decision variable
OF objective function
R1 Random number
R2 Random number
R*

j similarity ratio
SI spread index
SR solar radiation
Up upper constraints
Ub lower constraint
Wi Wight value
Xi

t+1 new position
Xgbest global solution
Xpbest the personal best solution
vij velocity
Zi new position after rotational movement
α Momentum coefficient
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