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ABSTRACT Most existing state-of-the-art deep learning algorithms discover sophisticated representations
in huge datasets using convolutional neural networks (CNNs) that mainly adopt backpropagation (BP)
algorithm as the backbone for training the face recognition problems. However, since decades ago, BP has
been debated for causing trivial issues such as iterative gradient-descent operation, slow convergence rate,
local minima, intensive human intervention, exhaustive computation, time-consuming, and so on. On the
other hand, a competitive machine learning algorithm called extreme learning machine (ELM) emerged
with extreme fast implementation and simple in theory has overcome the challenges faced by BP. The
ELM advocates the convergence of machine learning and biological learning for pervasive learning and
intelligence and has been extensively researched in widespread applications. Nonetheless, till date, none of
thework of ELMhas proved its competency in tackling face verification problem.Hence, in this paper, we are
going to probe for the first time the feasibility of ELM-based network in handling the face verification task.
We devise and propose a novel and distinguished hybrid local receptive field-based extreme learningmachine
with DeepID (hereinafter denoted as H-ELM-LRF-DeepID), to discriminate face pairs. The experimental
results on the YouTube face database, labeled faces in the wild (LFW), and CelebFaces datasets have shed
light upon the feasibility and usefulness of the H-ELM-LRF-DeepID in the face verification task.

INDEX TERMS DeepID, extreme learning machine, face verification, tuning free feature mapping.

I. INTRODUCTION
Recent years have seen the emerging advances in machine
learning technology and big data analysis [1]–[5], which
have raised its capabilities across a widespread of modern
applications, and power the next wave of innovation in the
face recognition task. Face recognition can be categorized
into two tasks: face identification and face verification. Face
identification is to recognize and classify the identity of a
probed face given a set of face images from the database with
labeled known identities. Face verification is to determine
whether two human face images belong to the same person,
as shown in Fig. 1 and Fig. 2. In this paper, we focus on
the face verification. Face verification is useful in many
applications, for example, verifying if a face matches with
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FIGURE 1. Pair of face images of same subject.

a valid identity, unlock a mobile device or an automated door,
providing security in various means [5].

Earlier works on face verification often engaged low-
level feature extractors and combined them to obtain feature
representations for face images. The models that produce
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FIGURE 2. Pair of face images of different subject.

impressively good performance often employ tens of
thousands of image descriptors [6]. Nowadays, it is more
common to learn the features that often make use of the
neural networks with deep architectures instead of engineer-
ing them [7]. Convolutional Neural Networks [8]–[11], with
many levels of abstraction allow computational models to
comprise several processing layers to learn representations
of an image have gained much popularity. Ameur et al. [12]
presented a deep learning network that used feature extraction
based on data processing components, with Enhanced Fisher
model for analysis and Heaviside step function to transform
the image into binary format. Di et al. [13] published a
metric learning method using the supervised knowledge of
Joint Bayesian in the CNN architecture. It involves the face
representation learning and recognition in training and fine-
tuning the CNNmodel. Two faces are jointly modeled using a
suitable prior on the deep face representation. The innovation
of the article lies in the joint modeling of two human faces.

Like the aforementioned deep learning neural networks,
most of the existing state-of-the-art face verification algo-
rithms have one thing in common, they adopt backpropaga-
tion (BP) algorithm as the backbone for training that involves
iterative gradient-descent steps to fine tune the weights
parameters that are used to compute the representation in
each layer from the representation in the previous layer [14].
In a typical deep learning system, there could be hundreds
of millions of these adjustable weights, and hundreds of
millions of labeled training samples to train the network.
As such, all of the BP-basedmethods suffer from the common
dilemmas, i.e., iterative and laborious gradient-descent oper-
ation, slow convergence rate, local minima, intensive human
intervention, exhaustive computation, time-consuming, and
so on [14], [15].

In addition to the challenge faced by BP algorithm, han-
dling massive raw images in the face verification task is usu-
ally considered as big dataset problems. The direct approach
to overcome big dataset problems often incurs intangible
costs, such as the investment of hardware, parallel computing
framework, and GPU computing that accelerates the process-
ing speed, etc. The success of deep learning series is often
attributed to large scale training dataset and the availability
of a powerful computer or GPU computing. However, not
all researchers can afford expensive hardware for the compu-
tational task that requires high processing power, speed and
memory.

Therefore, it also serves as our motivation to develop a
unique ELM-based learning face verification framework that
can perform comparably well, if not better, with the exist-
ing state-of-the-art deep learning architectures, but with the
advantage of eliminating the tedious BP training procedures
that are time consuming and of high computational com-
plexity that require the availability of the powerful computer
with fast processor and ample memory to run huge dataset.
Recently, a powerful and competitive machine learning algo-
rithm called the Extreme Learning Machine (ELM) proposed
by Huang et al. [16] has overcome the challenges faced by BP
with its straightforward learning framework. ELM advocates
the convergence of machine learning and biological learning
for pervasive learning and intelligence, has been extensively
researched in widespread applications. ELM and its variants
have shown themselves highly efficient and prominent in
providing solutions for various kind of problems in different
practical applications, i.e., regression, two-class, multiclass
classifications, given its higher scalability and less computa-
tional complexity in operation [17]–[20]. ELM also extended
its work to handle the generalized multi hidden layer feed-
forward networks in which a neuron could be a subnetwork
consisting of other hidden neurons when handling the image
classification tasks, i.e., Local Receptive Field based Extreme
Learning Machine (ELM-LRF) [21]–[26].

However, none of the work of ELM has proved its com-
petency in tackling face verification problem. Hence, we are
going to probe for the first time the feasibility of ELM-based
network in handling the face verification task. In this paper,
we devise and propose a novel and distinguished Hybrid
Local Receptive Field based Extreme Learning Machine
with DeepID (hereinafter denoted as H-ELM-LRF-DeepID),
to discriminate face pairs.

The main contributions of H-ELM-LRF-DeepID to the
ELM variants are as follows:
(i) The research work of using ELM-based framework to

determine whether a pair of face images belong to the
same person or not is unprecedented.

(ii) Different from most of the state-of-the-art algorithms,
H-ELM-LRF-DeepID does not implement an end to
end deep CNN based framework for face verification
tasks.

(iii) Elimination of BP-based algorithm for training to adjust
the connection weights which requires high computa-
tional time and exhaustive training epochs to minimize
loss function.

(iv) Hybridization of ELM with the renowned DeepID for
meaningful multi-scale feature extractions containing
both mid-level and global high-level features because
meaningful features representations are essential for
face verification.

(v) H-ELM-LRF-DeepID is a simplified learning algorithm
which strategizes on the tuning free hidden neurons
even when the output shapes and function modeling of
the neurons are unknown, for handling complex face
verification tasks.
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By eliminating the extensive computational cost of gra-
dient descent operation by BP, there is no qualm to admit
that the proposed H-ELM-LRF-DeepID is at ease of imple-
mentation, has provided an ultimate way of handling face
verification in a notable simple and lighter weight manner.

The content of the paper is organized as follows: Section II
introduces preliminaries of Extreme Learning Machine,
Local Receptive Fields based Extreme Learning Machine,
and DeepID. And then, Section III presents the methodol-
ogy of the proposed H-ELM-LRF-DeepID in a very detailed
manner. Furthermore, Section IV evaluates the performance
of H-ELM-LRF-DeepID against the existing state-of-the-
art algorithms and discusses the results. Finally, Section V
provides some concluding remarks.

II. PRELIMINARIES
A. EXTREME LEARNING MACHINES (ELM)
Extreme Learning Machine (ELM) is a fast learning algo-
rithm proposed by Huang et al. [16] for training the single-
hidden-layer feedforward networks (SLFNs). ELM for SLFN
is independent of training data samples and it supports
wide types of neural networks. Unlike the earlier work by
Schmidt et al. [22] that only considered using random hidden
neurons with only Sigmoid activation function, and a bias
weight is required in the output neurons to handle the system
error. When proposed, the universal approximation capability
with random hidden neurons (Sigmoid) was not proved yet:

fL (x) =
L∑
i=1

βigsig (ai · x+ bi)+ b (1)

where

gsig (x) =
1

1+ exp (−x)
(2)

On the contrary, Huang [28], [29] has clarified the differ-
ences of ELM compared to the other earlier works as afore-
mentioned. He proved that ELM is different from the previous
fully connected networks [22], as the strength of ELM lies in
its randomness of network parameters in threefold :

1. All layers in ELM are fully connected, and the parame-
ters of hidden neurons are randomly generated.

2. Not all input neurons will be connected to the hidden
layers, which means the connections are also randomly
generated. It is possible that only some input neurons are
connected to the corresponding hidden neurons.

3. A neuron can be a subnetwork of several neurons that
formed by the pooling functions, and local receptive
field. And it will result in learning local features. For
this reason, a single ELM may have some local parts
that contain multi-hidden layers.

ELM is renowned for its universal approximation capa-
bility for a wide type of nonlinear piecewise continuous
functionsG (a, b, x), and bias is not needed at all in the output
layer. The basic ELM for generalized SLFN with the output

respectively to xj will be:

fL
(
xj
)
=

L∑
i=1

βiG
(
ai, bi, xj

)
for j = 1, . . . ,N , (3)

where ai is the input weights which link the input layer and
first hidden layer, bi is bias or called learning parameter of
the hidden neurons, βi is the output weights which link the
hidden layer and output layer. G

(
ai, bi, xj

)
is the ith hidden

neuron output correspondingly to the input vector xi. Eqn. (3)
can also be written as:

H (a,b, x)β = T (4)

where

H (a,b, x) =

 h (x1)
...

h (xN )


=

 G (a1, b1, x1) · · · G (aL , bL , x1)
...

...
...

G (a1, b1, xN ) · · · G (aL , bL , xN )

 (5)

And

β =
[
β1 . . . β1

]T
, T =

[
t1 . . . t1

]T (6)

where H is the ELM hidden layer output randomized matrix,
and T is the training data target matrix. H (a,b, x) is named
by Huang et al. [12], [25]. It is the hidden layer output matrix
of the neural network. The ith hidden neuron output is the ith

column of H and respect to inputs x1, x2, . . . xN . H (a,b, x)
also can be denoted as H for convenient. By pseudo inverse
matrix of Eqn. (4), the output weights of ELM can be found as

β =
(
HTH

)−1
HTT (7)

If an unlabeled sample z required classification, the ELM
output function will be:

fL (z) = H (a,b, x)β (8)

In some case like a slack variable is introduced to ELM,
the output weight that given by Eqn. (7) will be updated with
a new user selectable constrained parameter, C :

β =

(
1
C
+HTH

)−1
HTT (9)

B. LOCAL RECEPTIVE FIELD BASED EXTREME
LEARNING MACHINE (ELM-LRF)
Inspired by ELM theories, Huang et al. [26] introduced the
local receptive fields of ELM (ELM-LRF), that considered
the local connection and local structures, with the utilization
of local receptive fields for obtaining a locally connected
ELM. The hidden layer of ELM-LRF refers to combinatorial
neurons of a convolution layer and a pooling layer. The input
connectionweights between the input and convolutional layer
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FIGURE 3. The architecture of ELM-LRF.

are randomly generated based on the continuous probabil-
ity distribution. To obtain a more complete set of feature,
the weights need to be orthogonalized.

In order to provide an efficient and deterministic solution,
the output weights are analytically calculated using Moore-
Penrose Pseudoinverse solution. To formulate the combina-
torial nodes of ELM-LRF, a specific network that uses the
step function is constructed to sample the local connections
and the square/square-root pooling network structure.

Furthermore, the pooling layer is fully connected to the
output layer. ELM theories show that different local receptive
fields in ELM-LRF can be generated due to the adoption of
different probability distribution used in generating random
hidden neuron. Fig. 3 shows the architecture of ELM-LRF.

The implementation of ELM-LRF is made up of two parts:
Part 1: Tuning-free ELM feature mapping
i. Random convolutional weights: The convolutional

weights between feature layer and input are randomly
generated based on standard Gaussian distribution. The
local reception field is r × r and input image is d × d .
Therefore, the feature map is (d − r + 1)×(d − r + 1).
Each input pixel is a neuron. Thus, the neurons (i, j) in
the k-th feature map, ci,j,k is :

ci,j,k (X) =
r∑

m=1

r∑
n=1

xi+m−1,j+n−1 · am,n,k

i, j = 1, . . . , (d − r + 1) (10)

ii. Square/square-root pooling: The output map of the
pooling layer, hp,q,ks is:

hp,q,k =

√√√√ p+e∑
i=p−e

q+e∑
j=q−e

c2i,j,k (11)

p, q = 1, . . . ,(d − r + 1)ci,j,k = 0 if (i,j) out of bound

Part 2: ELM learning based on regularized least-squares
solution

Throughout the ELM learning process, only the output
weight β needs to be analytically calculated. Consider N
training samples and concatenate all pooling neurons into a
row vector, the matrixH ∈ RN×(d−r+1)2 of ELM-LRF is then
yield:

β =


HT

(
1
C
+HHT

)−1
T if N ≤ K · (d − r + 1)2(

1
C
+HTH

)−1
HTT if N > K · (d − r + 1)2

(12)

C. DeepID
Deep hidden Identity features (DeepID) is introduced by
Sun Y et al. [27] which is capable of learning high-level
features from face images in an efficient way with deep
Convolutional Neural Network (CNN) for face verification.
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FIGURE 4. The architecture of DeepID [27].

Fig. 4 shows the structure of DeepID for learning features.
It comprised an input layer, four convolutional layers each
with a max-pooling layer except the last convolutional layer,
and then a fully connected DeepID layer and an output layer
constituted by softmax function that represents the different
class labels. ReLU nonlinearity activation function is used for
hidden neurons instead of a sigmoid function for better fitting
competency [28].

Different from the general CNN, the last hidden layer
of DeepID is fully connected to the third and fourth con-
volutional layer to extract both high-level and low-level
features [28].

The strength of DeepID is that it extracts multi-scale
features containing both mid-level and global high-level fea-
tures, which can have good generalization on face verifica-
tion task and therefore reduces the possible information loss.
Moreover, the generalized high-level features will not overfit
to small subsets of faces. DeepID represents a huge amount
of class labels with a small number of hidden neurons. It is
due to the fact that the use of more identities or class labels
during training enables extraction of a more compact and
discriminativeDeepID feature, which in turn helps to increase
the dimensionality of prediction and additionally, improves
the performance of face verification.

Later DeepID series [11], [33], [34] further refine their
work using non-parametric Joint Bayesian method, as well
as joint identification-verification supervisory signal, auxil-
iary supervisory structure, deep architecture, and other data
samples. For example, DeepID2 and DeepID3 are devel-
oped with the aim to decrease the intra-personal variations
and increase the inter-personal differences. The architecture
of the DeepID2 is similar to the DeepID [27], with local
weight-sharing in the third convolutional layers and fourth
convolutional layers. Identification and verification sig-
nals are weighted by a hyperparameter, λ, to learn the
DeepID2 features. DeepID2 is a deep learning methodology
that has deep architecture and good learning capability.

III. OUR PROPOSED ALGORITHM
From the current literature, none of the work of ELM has
demonstrated its competency in tackling face verification
problem. Therefore, we are going to probe for the first
time the feasibility of ELM-based network to discriminate
face pairs. In this respect, we introduce some advancement
and assimilation of significant properties of the profound
DeepID [27] on the Local Receptive Field based ELM
(ELM-LRF) to form H-ELM-LRF-DeepID. The ELM-LRF
is selected as the basis of the new proposed model because it
turns out to be the closest match to the theory of conventional
ELM since the two algorithms are developed by the same
founder researchers in [16], [26]. The ELM is originally
proposed by Huang et al. [16] as a fast learning algorithm
that provides good approximation performance with ran-
dom hidden neurons and analytically determines the output
weights of single layer feedforward neural network. Later,
the ELM-LRF [26] is devised to have 1 convolution layer and
1 pooling layer, which can be assimilated to the structure of
DeepID. Hence, it serves as our main motivation to develop
the proposed H-ELM-LRF-DeepID to enhance the operation
of feature mapping of the ELM-LRF for effective learning of
the meaningful features representations of the face images to
tackle the unprecedented face verification task.

As shown in Fig. 5, H-ELM-LRF-DeepID accepts raw
images that come with RGB component for processing.
H-ELM-LRF-DeepID leverages on the superiority of DeepID
in terms of feature extraction, is endowed with the ability
to extract compact and discriminative multi-scale feature
containing both mid-level and global high-level features that
ensure good generalization on face verification task.

Following the architecture of DeepID, the map size used in
every feature extraction layer, i.e., feature layer and pooling
layer, of DeepID is adopted. Besides that, downsampling
concept in the pooling layer of DeepID is utilized to reduce
the dimension of the pooled output vector. The feature vec-
tor of the last n-th layer of convolutional neurons and the
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FIGURE 5. The architecture of the proposed H-ELM-LRF-DeepID for face verification.

(n-1)th pooling neurons is concatenated into a row vector for
further use by ELM hidden layer and ELM learning process
based on the regularized least squares solution [16].

It is worth highlighting that H-ELM-LRF-DeepID, is dif-
ferent frommost of the state-of-the-art algorithms, it does not
implement an end to end deep CNN based framework for face
verification tasks. H-ELM-LRF-DeepID has eliminated the
extensive computational cost of gradient descent operation of
DeepID learning to fine tune the connection weights in many
epochs by BP, instead, it uses ELM as the foundation for face
verification framework which is at ease of implementation.
Moreover, H-ELM-LRF-DeepID strategizes on the tuning
free hidden neurons evenwhen the output shapes and function
modeling of the neurons are unknown, for handling complex
face verification tasks.

It is also interesting to note the few differences between
the new proposed H-ELM-LRF-DeepID and the conventional
ELM-LRF, as follows:

(i) H-ELM-LRF-DeepID introduces downsampling con-
cept of DeepID in the pooling layer of ELM-LRF,
besides the Square and Squareroot operation as pro-
posed by [16], to reduce the dimension of the pooled
output vector.

(ii) H-ELM-LRF-DeepID has a fully connected hidden
layer between the concatenation layer of the feature
vector and output layer, in which ELM-LRF does not
have.

(iii) H-ELM-LRF-DeepID flexibly extends the single-layer
of convolution and pooling of ELM-LRF to a multi-
layer feature mapping network to produce highly com-
pact and predictive features.

(iv) H-ELM-LRF-DeepID concatenates two layers of com-
binatorial neurons (i.e., last n-th layer of convolutional
neurons and the (n-1)th pooling neurons) of a feature
vector into a row vector. On the contrary, ELM-LRF
concatenates only the neurons of the last pooling layer
into a row vector.

The methodology of our proposed H-ELM-LRF-DeepID is
as follows:

A. GENERATE IMAGE TRAINING PAIRS
FOR FACE VERIFICATION
Step 1: Obtain a set of training images consist of faces (one
face per image) and their respective class label (i.e., real iden-
tity of the face in the image). Decide N verification pairs for
training, where N is an even integer. In the training set, half
of them are of same class (i.e., faces of both images belong
to same identity) and the other half are of different class (i.e.,
faces of both images belong to two different identifies).

Step 2: Randomly select (N /2) pairs of images from train-
ing images, where in each pair, both images of human faces
belong to the same identity.

Step 3: Randomly select (N /2) pairs of images from train-
ing images, where in each pair, both images of human faces
are from two different identifies.

Step 4: Combine results of Step 1 and Step 2, hence the
outputs of this procedures are X and T matrix are

X =


x1,1
x2,1
...

xN ,1

x1,2
x2,2
...

xN ,2


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T =


T1
T2
...

TN

 (13)

where xi,1 and xi,2 (for i = 1, 2, . . . , N )) are two images of
i-th training pair for face verification and Ti is the respective
target output such as faces of the pair images belong to the
same identity or two different identities (For instance, Ti = 1
for i = 1, 2, . . . , N

2 for a pair of face image that share the
same identity, while Ti = −1 for i = N

2 + 1, N
2 + 2, . . . , N

for a pair of face image that is distinctive).
The generatedX and Tmatrix are to be used in the training

phase of H-ELM-LRF-DeepID for face verification.

B. TRAINING PHASE FOR FACE VERIFICATION
Step 1: Load the matrix X and T of N pairs that has been
prepared from the aforementioned steps of generation of
training image pairs for face verification.

Step 2: Referring to Fig. 3, layer 1 is the input layer of
H-ELM-LRF-DeepID. Upon arrival of the first pair of image
at this layer, the input image x1 will be presented first
to undergo feature extraction, followed by input image x2,
in sequential mode. The input image is expected to be in the
square matrix, and image is resized to q× q (where q = 60)
whenever necessarily.

Step 3: Layer 2 is Convolution Layer 1 (C1), with kernel-
size= 5 (i.e., convolutionmask 5×5). Following themap size
setting in DeepID [27], the number of output feature maps for
this layer is K1, i.e., K1 = 20. In this respect, 20 distinct input
weights (also known as convolutional mask) are randomly
generated with orthogonalization in place, as implemented
below:

(i) Randomly initialize input weights matrix, W
init

based
on continuous probability distribution. The input image
size is q × q (where q = 60), and receptive field r × r
(i.e., r = 5), the size of the resulted output feature map
should be (q− r + 1)× (q− r + 1).

(ii) Orthogonalize the initial weight matrix W
init

using
Singular Value Decomposition (SVD) method.

W
init
∈ <

r2×K1

Wk
init
∈ <

r2 , k = 1, . . . .,K1 (14)

In the case of r2 < K1, orthogonalization cannot be
performed on W

init
. Hence, the approximation method

is used, i.e., W
init

is transposed, orthogonalized, and
then transpose it back.

(iii) The input weights to the k-th feature map is wk ∈ <
r×r

which corresponds to W
init
k ∈ <

r2 column-wisely.
Notice that the input image with dimension 60 × 60 is
interfaced to the C1 layer, while the resulted output of
C1 layer is having dimension K1 ×56× 56. The size of
the image is reduced from 60 to 56 due to convolution
operation. The resulted convolution at coordinate (i, j)

of image in the k-th feature map, ci,j,k is calculated as:

ci,j,k (x) =
r∑

m=1

r∑
n=1

(
xi+m−1,j+n−1 × wm,n,k

)
for i, j = 1, . . . ,(q− r + 1) (15)

Step 4: Layer 3 is Pooling Layer 1 (P1), with pooling
scale, s = 2. It involves two operations in this layer, namely
pooling and downsampling. This concept is different from the
original ELM-LRF [16], because ELM-LRF does not execute
downsampling operation. Implementation of the pooling and
downsampling process is as below:

(i) Modified Square and Square Root (MSSR) pooling
operation is applied on the input images of size 56×56.
The number of output map of pooling layer must follow
the size of C1, due to the local ‘‘1-to-1’’ connection
from C1 layer to P1 layer. For instance, 1st output of
C1 will be served as the input to the P1 layer. The size
of output in this step is K1 ×55× 55, and subsequently
it will be going through the downsampling process,
as shown in Step 4(ii).

pu,v,k =

√√√√√v+1∑
j=v

u+1∑
i=u

c2i,j,k

for u, v = 1, . . . ,55, k = 1, . . . ,K1 (16)

(ii) Apply downsampling to the output of Step 4(i),
by selecting column and row of 1, 3, 5. . . , 55 (ignore
column 2, 4, . . . , 54) to form the output of pooling layer
P1. Thus, the size of P1 output map is now reduced by
K1 ×28× 28.

Step 5: Repeat Step-3 and Step-4 for another two pairs
of Convolution and Pooling layer, until layer 7, that allows
the feature extraction and mapping to complete in the unified
H-ELM-LRF-DeepID. Note that the number of output feature
maps for next layer, Ki+1 is set as Ki+ K1. As for size of
image qxq is updated by the formula q – r+ 1. Feature
mapping of ELM is highly advocated in [26] that explains the
theoretical relationship between the local receptive fields and
random hidden neurons. ELM has proved that it can flexibly
apply different types of local receptive fields as long they
are randomly generated based on any continuous probability
distribution.

Step 6: Referring to Fig. 5, the output vector of layer-7
(i.e., P3) will be sent to layer 8. Layer 8 is the last feature
extraction layer, comprising only the Convolution layer (C4),
with kernel size = 3. Here in this layer, K4 = 80. It means
that all 80 different input weights are fully connected to the
output map of layer 7 (i.e., P3). The input to C4 layer is of size
K4 ×4×4, with convolution operation, image size is reduced
to K4 ×2× 2.
Step 7: The output vectors of both the P3 and C4 layer

(layer-7 and 8), are concatenated into a row vector. The
resulted concatenation is referred to as feature vector V of
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input image, and then sent to the hidden layer of H-ELM-
LRF-DeepID.

V =


v1,1
v2,1
...

vN ,1

v1,2
v2,2
...

vN ,2

 (17)

Note: v1,1 is denoted as feature vector of input image x1,1
of the 1st training pair, and v1,2 is denoted as feature vector
of input image x1,2 of the 1st training pair.
Step 8: Some initialization of hidden layer parameters, as

follows:
(i) Select the number of hidden neurons (L) of fully con-

nected hidden layer. According to Huang et al. [25],
good generalization performance can be obtained when
the size of hidden neuron is large enough, i.e., 2000.

(ii) Randomly generate weights and bias of Sigmoid hidden
neurons, i.e., {(ai, bi)}Li=1.

(iii) Based on the tuning strategy as suggested by
Huang et al. [16], the user-specified parameter (C)
is chosen from the range of C ∈ {2−24, 2−23, . . . ,
224, 225}.

Step 9: Compute Hidden layer output matrix H of
H-ELM-LRF-DeepID, same procedure as what native ELM
does to yield H.

H =

 G(a1, b1, v1) . . . G(aL , bL , v1)
: :

G(a1, b1, vN ) . . . G(aL , bL , vN )


NxL

(18)

Note G(ai, bi, vj) is the output of the i-th Sigmoid hidden
neuron respectively to the j-th feature vector vj as equation
below:

G(ai, bi, vj) =
1

1+ exp{−(ai · vj + bi)}
(19)

where ai and bi are the input weights (linking the input layer
to the first hidden layer) and bias (learning parameters) of the
hidden neurons.

Step 10: Note the original learning equation of ELM is
developed based on the following equations.

T = Hβ (20)

The output weights, β are computed using Moore-Penrose
generalized inverse.

β = (
I
C
+HTH)−1HTT (21)

Note in order to improve the stability of learning, I
C is intro-

duced in the Eqn (19) following the approach in [25]. I is the
identity matrix of same size with HTH.

As described in [25], there are many different methods can
be used to calculate the Moore-Penrose generalized inverse
of a matrix, such as orthogonal projection method, orthog-
onalization method, iterative method, and singular value

decomposition (SVD). In this paper, we implementedMoore-
Penrose generalized inverse of a matrix in Eqn. (21) using
orthogonal projection method.

Step 11: Save a, b, and β for further use in testing phase.

C. TESTING PHASE FOR FACE VERIFICATION
Step 1:
(i) Obtain a pair of new and unseen testing images

Z = [z1 z2] for testing face verification. Here z1 and
z2 is presented to the feature extraction layers one after
another, in sequential mode.

(ii) Meanwhile, load all matrix that has been saved in
Step 12 of training phase, i.e., a, b, and β.

Step 2: Use Step-2 to Step-7 from the training phase to
complete the feature extraction procedures for Z to obtain
feature vectors of z1 and z2, which are V =

[
v1 v2

]
.

Step 3: Compute hidden layer output matrix h, using the
feature vector V and the saved weights a, b from the training
phase.

h =
[
G(a1, b1,V) . . . G(aL , bL ,V)

]
1xL (22)

Note is the output of the i-th Sigmoid hidden neuron to the
feature vector V.

Step 4: Calculate the prediction output.

y = hβ (23)

Step 5: If the prediction output y is larger or equal to zero,
it is categorized as class 1 (in other words, verification output
indicates both images of this pair is sharing the same identity),
else it is categorized as class -1 (both images are of different
identities).

Verification Output =


+1, if y ≥ 0
else
−1, if y < 0

(24)

Table 1 and 2 show the operations of each step for the
training and testing phase in brief.

IV. EXPERIMENTS AND RESULTS
In this section, we evaluate the efficacy and feasibility of
H-ELM-LRF-DeepID using two face verification datasets,
i.e., YouTube Faces dataset and Labeled Faces in the Wild
(LFW) dataset. We run our proposed framework of H-ELM-
LRF-DeepID in a MATLAB 2016a environment on the Intel
Xeon CPU, 3.40GHz with 8GB RAM, against numerous cur-
rent state-of-the-art methods as described in Section A and B
below. The two hyperparameters, i.e., (i) the number of fea-
ture maps for the first pair of convolution-pooling layer (K1)
is set as 20 that follows the design in [27], and (ii) the
number of hidden neurons (L) is defined as 2000 for huge face
verification datasets. According to Huang et al. [25], good
generalization performance can be obtained when the size of
hidden neuron is large enough.
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TABLE 1. Training phase of face verification of H-ELM-LRF-DeepID.

A. YOUTUBE FACES DATASET
The dataset under consideration is YouTube Faces dataset.
YouTube Faces database is a dataset of numerous face videos
designed for investigating the problem of unconstrained face
recognition in the format of videos. The objective of this
database is to produce a large scale collection of videos with
large variations in expression, pose, illumination, age and
so on, along with class labels to indicate a person’s identity
appearing in each video.

There are 3425 videos of 1595 different people (subjects)
downloaded from YouTube. Each subject will have an

average of 2.15 videos, with 48 frames for the shortest clip,
and 6070 frames for longest clip duration. As such, the aver-
age length of each video clip is approximately 181 frames.

In this paper, we follow the setting as in [31] and only con-
sider the restricted protocols. In this standard setting, we use
the 5000 video pairs randomly selected in [31], half of which
are from the same subjects, and the remaining half are from
different subjects. These pairs are divided into ten subsets
with each subset containing 250 same and 250 not same pairs
for ten-fold cross validation. The pairs are precisely divided
to make sure that the two categories (same/not same) remain
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TABLE 2. Testing phase of face verification of H-ELM-LRF-DeepID.

subject mutually exclusive. In other words, it means that the
subjects in the test set will not appear in the training set. This
is to evaluate if the proposed model is efficient to learn the
properties and knowledge of what determines the face similar
and dissimilar. The C parameter of H-ELM-LRF-DeepID
is selected as 25 based on the best result of ten-fold cross
validation.

As shown in Table 4, the proposed H-ELM-LRF-DeepID
achieves a remarkable verification accuracy of 90.32% as
compared to other profound state-of-the-art face verification
algorithms in the literature on Youtube Faces dataset, i.e.,
MBGS-LBP [31], MBGS-FLBP [31], MBGS + SVM [32],
APEM-FUSION [33], STFRD+ PMML [34], VSOF+OSS
(Adaboost) [35], DDML [36], EigenPEP [37], LM3L [38],
CNN-3DMM estimation [39] and Joint Bayesian [40], etc.

It is worth to highlight that the proposed H-ELM-
LRF-DeepID has also outperformed the well-known
Joint Bayesian approach in face verification published
recently [40], by a considerable margin. ROC curve in Fig. 6
also shows that H-ELM-LRF-DeepID performs significantly
well. The closer the ROC curve to the (0,1) point, the bet-
ter the deviation from the 45-degree diagonal line. On the
other hand, it can be observed that the conventional ELM
achieves 66.65% in the face verification performance, while
the ELM-LRF with its compelling feature mapping layer
manages to elevate the accuracy further to 80.15%by learning
distinctive features more effectively, in contrast to the simple
3-layer ELM.

As for training time, H-ELM-LRF-DeepID takes
3.63 seconds to complete Eqn. (21) and 346.42 seconds
for the whole training process for YouTube Faces dataset.
On the other hand, the ELM-LRF which consists of a pair of

convolution-pooling layer for feature mapping takes around
171.79 seconds for the entire training of YouTube data, while
the conventional ELM takes only 3.95 seconds to complete
the training process of the same dataset in view of its simple
implementation of only 3-layer architecture without any
feature extraction layer.

B. LABELED FACES IN THE WILD (LFW) DATASET
We also evaluate H-ELM-LRF-DeepID on the LFW dataset,
which reveals the state-of-the-art of face verification in the
wild. The LFW dataset [41] consists of more than 13000 face
images of 5749 subjects with huge variations in resolution,
age, pose, illumination, and expression.

We follow the standard evaluation setting as in [41] and
only consider LFW for training. First, 6000 pairs of images
are formed, half of which are pairs of images of the same
person, and half of different individuals. These pairs of
images are divided into ten subsets, and each subset con-
sists of 300 same and 300 not-same pairs. The perfor-
mance is computed using ten-fold cross validation using these
subsets. Here, theC parameter of the proposed H-ELM-LRF-
DeepID used is 210 based on best result of the ten-fold cross
validation.

The subsets are distributed in a subject mutually exclusive
manner, whereby if images of a subject appear in the sub-
set, no image of that subject is included in another subset.
This distribution design encourages H-ELM-LRF-DeepID
to learn what makes faces similar and dissimilar, rather
than learn the facial appearances and features of specific
subjects.

In this experiment, we compare our proposed framework
with several state-of-the-art face verification algorithms,
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FIGURE 6. ROC curve of the proposed H-ELM-LRF-DeepID and existing state-of-the-art algorithm.

including APEM-FUSION [33], Eigen-PEP [37], Joint
Bayesian [40], Conv Net-RBM [42], CMD + SLBP [43],
Fisher Vector Faces [44], Tom-vs-Pete Classifiers [45],
High-dim LBP [46], ConvNet-RBM [47]. From Table 5, it is
obvious that the proposed H-ELM-LRF-DeepID achieves
significant verification accuracy of 97.47%, which con-
sistently outperforms other state of the art methods by
13.39% [33], 8.5% [37], 4.29% [40], 4.95% [42], 4.89% [43],
4.44% [44], 4.17% [45], 4.27% [46], and 0.39% [47]. Besides
that, we also evaluate and record the verification accuracy of
the conventional ELM and ELM-LRF on the LFW dataset
in Table 5. H-ELM-LRF-DeepID takes 3.89 seconds to com-
plete Eqn. (21) and 372.68 seconds for the whole training
process of LFW dataset. On the other hand, the ELM-LRF
with only 1 convolution layer and 1 pooling layer takes
158.98 seconds for the training of LFW dataset. Not forget-
ting about the conventional ELM, it tops the computational
efficiency among all other methods due to the simplicity and
convenience of implementation in its 3-layer neural network
architecture, by showing a record of 3.72 seconds for training
the LFW dataset.

C. LABELED FACES IN THE WILD (LFW) DATASET WITH
TRAINING ON THE CelebFaces DATASET
We further evaluate the face verification accuracy of the
proposed H-ELM-LRF-DeepID for the LFW dataset with
cross-dataset training using the outside training data, i.e.,

CelebFaces dataset [42]. For this purpose, we follow the set-
ting in [42], [47], where 80% from CelebFaces are randomly
chosen to train the proposed model, while the remaining 20%
are used for validation purpose in order to select the best C
parameter. Here, the C parameter of the proposed H-ELM-
LRF-DeepID is selected as 27 based on the best result of the
ten-fold cross validation. Note that the subjects in CelebFaces
and LFW are mutually exclusive.

Table 6 shows the verification results of LFW for vari-
ous state-of-the-art methods that rely on the outside train-
ing data. Here, we achieve remarkable verification accuracy
of 97.37%, which is superior to the numerous alternative
state-of-the-art approaches [6], [27], [40], [46]–[48]. On this
assessment, the good result indicates that the verification
effectiveness lies within the competence of the effective fea-
ture learning of the proposed H-ELM-LRF-DeepID which
can be deemed independent of the source of the dataset.
Besides that, we also record the verification accuracy of
the conventional ELM and ELM-LRF for training on the
CelebFaces dataset in the same table. ELM-LRF attains better
face verification accuracy of 84.05% as compared to the
conventional ELM due to the fact that the ELM-LRF com-
prises a feature mapping layer that allows effective learning
and extraction of more meaningful representations of the
image when dealing with computer vision and image process-
ing tasks. As for training time, H-ELM-LRF-DeepID takes
373.55 seconds to complete the training of the CelebFaces
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TABLE 3. Nomenclature.

dataset, while the ELM-LRF with only 1 convolution layer
and 1 pooling layer takes 159.90 seconds to complete the
training process, and the ELMwith the 3-layer structure takes
only 3.86 seconds for the training.

It is worth pointing out that the proposed H-ELM-LRF-
DeepID has a more straightforward and simplified archi-
tecture as compared to the other deep learning methods in
Table 4, 5 and 6, on the grounds of the random generation
of the weights of the masks in the convolutional layers of
H-ELM-LRF-DeepID that no iterative adjustments of
weights required during the training process.

In short, H-ELM-LRF-DeepID inherits the virtue of
ELM [25] as a simplified and effective learning algo-
rithm with the direct regularized least square solution.
Besides that, the randomly generated connection weights of
H-ELM-LRF-DeepID due to the different types of probability
distributions used in applications during the initialization

TABLE 4. Verification results over the YouTube faces dataset.

TABLE 5. Verification results over the LFW dataset (without outside
training data).

stage, also contributes to the ease of implementation of
H-ELM-LRF-DeepID. Huang [23]mentioned that if all of the
hidden neuron parameters are randomly generated according
to any continuous sampling probability distribution, then the
output mapping of the hidden layer is considered random
feature mapping. More importantly, when the hidden layer
mapping need not be tuned and is not parametric, it becomes
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TABLE 6. Verification results over the LFW dataset (with training on
celebFaces dataset).

independent of the training data samples and no longer sen-
sitive to the user-defined parameters.

Based on the outstanding results, the proposed H-ELM-
LRF-DeepID is now proved empirically to be an effective,
practical and robust face verification algorithm for being able
to distinguish the similarity and dissimilarity properties from
the observations of feature vectors.

V. CONCLUSION
The ELM is an emerging approach in the field of machine
learning, but it has not been investigated for solving face
verification problem. It will be a new breakthrough to ELM
ideology if ELM-based model can prove itself not only good
at handling face or object identification, but also capable of
tackling the face verification task as good as other state-of-
the-art face verification algorithms. In this paper, we propose
and prove a novel, distinguished and unified end-to-end face
verification framework, that well integrates two stages of
face verification (i.e., discriminative feature extraction and
verification) into a unified locally connected ELM architec-
ture, denoted as Hybrid Local Receptive Field based Extreme
LearningMachinewithDeepID (H-ELM-LRF-DeepID). The
assimilation of DeepID into ELM architecture ensures dis-
criminative multi-scale feature extraction containing both
mid-level and global high-level features because meaning-
ful features representations are essential for face verifica-
tion. Different from most of the state-of-the-art algorithms,
H-ELM-LRF-DeepID does not implement an end to end deep
CNN based framework with BP learning for face verification.
Owing to its straightforward architecture in output layer
and tuning free hidden neurons that guarantees good gen-
eralization capability, H-ELM-LRF-DeepID has eliminated
the need for the extensive computational cost of the itera-
tive gradient descent operation in the complex face verifi-
cation tasks. The encouraging performance of the proposed
H-ELM-LRF-DeepID over the YouTube Faces dataset has
well demonstrated its applicability, competitiveness, and effi-
cacy in solving face verification task, especially taking into
consideration the ease of implementation by accepting raw
images that come with RGB component for processing.
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