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ABSTRACT Systems based on fog computing produce massive amounts of data; accordingly, an increasing
number of fog computing apps and services are emerging. In addition, machine learning (ML), which
is an essential area, has gained considerable progress in various research domains, including robotics,
neuromorphic computing, computer graphics, natural language processing (NLP), decision-making, and
speech recognition. Several researches have been proposed that study how to employ ML to settle fog
computing problems. In recent years, an increasing trend has been observed in adopting ML to enhance fog
computing applications and provide fog services, like efficient resource management, security, mitigating
latency and energy consumption, and traffic modeling. Based on our understanding and knowledge, there is
no study has yet investigated the role ofML in the fog computing paradigm. Accordingly, the current research
shed light on presenting an overview of the ML functions in fog computing area. The ML application for
fog computing become strong end-user and high layers services to gain profound analytics and more smart
responses for needed tasks. We present a comprehensive review to underline the latest improvements in
ML techniques that are associated with three aspects of fog computing: management of resource, accuracy,
and security. The role of ML in edge computing is also highlighted. Moreover, other perspectives related to
the ML domain, such as types of application support, technique, and dataset are provided. Lastly, research
challenges and open issues are discussed.

INDEX TERMS Fog computing, machine learning, Internet of Things (IoT), applications.

I. INTRODUCTION
The Digital Age has experienced a rise in the daily uti-
lize of intelligent devices and computers by organizations
and individuals [1]. Electronic devices are used to generate
data through applications and sensors. Consequently, many
organizations must assume the responsibility of regularly
storing huge amounts of data [2]. At present, a dynamic
information technology infrastructure is required by organi-
zations due to the shift to cloud computing, which provides
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advantages in terms of scalability, accessibility, and pay-per-
use features. Cloud computing has made available different
types of common services, such as Platform as a Service
(PaaS), Software as a Service (SaaS), and Infrastructure as
a Service (IaaS)—all of which are heading toward ‘‘Any-
thing’’ as a Service [3].However, certain big data gener-
ated by sensors cannot be transferred to and processed by
cloud. Moreover, faster processing is required by several
Internet of Things (IoT) applications, but current cloud capa-
bility will be unable to process such applications. This prob-
lem is solved using the fog computing paradigm, in which
the processing power of devices close to a user (i.e., idle
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computing power) is harnessed to facilitate storage, network-
ing at the edge, and processing [4]. Diverse goals perform
via Fog computing such as efficiency improvement, data size-
reduction that required to be transported to the cloud in multi-
purposes of data like data processing, analysis, and storage.
This is often done for performance causes, but it may also be
carried out for security and compliance reasons [5]. Recently
the AI algorithms are introduced into the IoT data analytic
procedures [6]–[8].

A low layer network exhibits many undesirable features,
such as an inadequate onboard memory, an unreliable low-
bandwidth communication network, and processing power
and heterogeneous hardware that are dissimilar to the
cloud infrastructure [9]. Computing technologies in different
areas, such as artificial intelligence (AI), GPU computing,
cloud computing, and other hardware enhancements, have
advanced in the last decade [10], with machine learning (ML)
being regarded as the most popular AI algorithm used in
various fields. In several previous studies, researchers have
examined howML can be used to solve networking problems,
such as resource allocation, routing, security, and traffic engi-
neering [11]–[15]. Accordingly, ML plays as a key technol-
ogy in autonomous intelligent/smart environment concerning
management and operation aspects.

Furthermore, the relevance of ML extends to IoT, because
without ML, IoT will not be possible regardless of whether it
is used to perform functional (e.g., routing), monitoring (e.g.,
anomaly detection), or preprocessing tasks. Thus, discussing
ML within the context of fog, cloud, and edge computing
for distributing and implementing IoT applications is impor-
tant [16]. However, in high-level fog nodes, Weka [17] and
Scikit-learn [18], are different libraries and frameworks that
can be used to implement numerous AI applications. The
implementation of capabilities to analyze data found on net-
work devices like routers and switches is easy using current
technologies, such as Cisco’s IOS XR. An investigation of
ML was conducted within the context of actuators, sensors,
and low-level fog nodes [19]. ML is used to execute and
optimize functional tasks, such as clustering, routing, duty-
cycle scheduling, data aggregation, and medium access con-
trol (MAC) [20].

Themanagement of relevant processes in fog nodes is diffi-
cult because the majority of these processes are rapidly evolv-
ing into complex, heterogeneous, and dynamic structures.
Moreover, fog nodes services should be improved concerning
diversity and efficiency to engage more users. In many previ-
ous researches, ML has been successfully applied to fog com-
puting paradigm; hence, fog computing (node-server) can
benefit fromML in various ways. For example, deep analytics
can be obtained by beneficiaries through the application of
ML to fog computing. Meanwhile, efficient intelligent fog
computing applications can be developed because feasible
solutions can be provided by ML. These solutions enable the
mining of information and features hidden in captured data.

In this work, different major contributions are summarized
as follows.

FIGURE 1. Review methodology.

TABLE 1. Fog computing characteristics.

• We review studies that adopted ML to address each of
resource management, accuracy, and security problems
in fog computing paradigm.

• We highlight the ML role in some of edge computing
applications

• The challenges and open issues are discuss in fog com-
puting concerning resource management, accuracy, and
security.

The remaining article sections are presented in detail
in Figure 1.

II. TERMINOLOGIES AND CONCEPTS
Cisco considered as a pioneers in deploying the fog com-
puting model through which cloud platform is extended and
brought closer to the devices of end users. In this manner, var-
ious issues, such as latency sensitivity, geographical distribu-
tion support, and quality-of-service (QoS)-aware IoT appli-
cations [21], are solved. Fog computing is a novel paradigm
through which the cloud platform model is extended by using
network edges to back up computing resources. Similar to
the cloud platform, fog computing provides data storage and
application services [22].

A fog system has several features as listed in Table 1 [23].
In addition to the features listed in Table 1, different aspects

distinguish a fog system from cloud computing, and each
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TABLE 2. Fog versus cloud computing in different aspects.

feature has its advantages and disadvantages. Table 2 presents
several popular aspects [24]–[26].

The terms ‘‘fog computing’’ and ‘‘edge computing’’ are
used interchangeably in industry and academia. In this paper
we discriminate between two mentioned terms. Although
they serve the same purpose, namely, to decrease network
congestion and end-to-end delay, the difference between fog
computing and edge computing is the manner in which data
are processed and handled and the locations of computing
power and intelligence power. In other word, the major dif-
ference between the two is that fog computing is decen-
tralized, (i.e. It does not involve centralized computing).
Briefly, the processing and storage of data are performed in
a decentralized computing architecture between the source
and the cloud infrastructure [22]. The central concept of
edge computing involves ‘‘pushing’’ a computation facility
toward data sources, such as mobile devices, sensors, and
actuators [27], [28]. Edge components play individual roles
in processing data locally, instead of sending them toward the
cloud. Meanwhile, the decision regarding whether to process
data from multiple sources or send them to the cloud is made
by a fog node, which uses its resources to make such deci-
sions. Moreover, edge computing does not offer any support
to many services, such as SaaS, IaaS, PaaS, and other cloud-
related services. By contrast, fog computing supports all these
services. In summary, edge computing [27]–[29] is entirely
edge localized, but communication and computing resources
are extended toward a network’s edge see figure 2.

III. EDGE COMPUTING WITH ML
In IoT systems, edge networks, equipment, and sensors are
found throughout the network. Requirements for bandwidth,
latency, and network security are imposed on many IoT
applications. However, cloud computing fails to meet these
requirements. An existing technology that can fulfill such
requirements is edge computing [30]. For example, virtual

FIGURE 2. Cloud, fog, and edge computing.

reality and augmented reality apps that necessitate high band-
width can procure contents from an edge network; in another
example, data commutation by vehicles can be achieved
through edge networks, and vehicles on a road move in a
coordinated manner to enhance user proficiency [31]. The
model of the edge computing issue in IoT networks is shown
in Figure 3. The model allows the analysis of data from
traffic and sensors. Many methods have been used in ML
to classify data obtained from the features extracted from
data sources. The utilization of results can be monitored
in intrusion detection, disease identification, recognition of
imaging, and traffic engineering. Thus, Table 3 provides an
illustration of the studies reviewed in this work.

A. EDGE COMPUTING APPLICATIONS
A new framework that involved a number of wearable devices
was proposed in Borthakur at al. [32]. These authors recom-
mended the use of edge computing devices although these
devices have fewer resources. In addition, they provided a
description for a proposed novel telehealth computing archi-
tecture that involved decentralized services at an edge net-
work. Apart from speech signal recognition algorithms used
in telehealth monitoring, Parkinson’s disease was recognized
using k-means clustering. Similarly [33] proposed a PreCog
system that recognizes images rapidly through catching and
prefetching on edge devices. The proposed system comprises
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TABLE 3. Current ML-based edge computing studies.

FIGURE 3. Role of ML in edge computing.

multi-parts that collaborate with the system (i.e., edge
server, cloud server, and devices). PreCog utilizes computing
resources on the devices as well as the cloud server because
of the complexities involved in computing and the bulk of the
data included in image recognition. This process differs from
the aforementioned edge computing solutions that involve
completing computing activities on the edge server.

A recognition cache is used by the edge server and the
devices to store important parts of the proposed model.
Furthermore, the devices prefetch a fraction of the trained
classifiers that are set to be utilized subsequently; a HiCH
which stand for a hierarchical computing architecture for an
IoT network in healthcare was posited by [34]. Current ML
methods in architecture are distributed among separate layers
of a fog network. For instance, sensor devices can perform
diverse functions such as sensing and monitoring; the cloud
is responsible for large training processes, while the edge is
in charge of local decision-making and system management.

A system based on IBM’sMonitor-Analyze-Plan-Execute-
Knowledge model was devised by authors and focused on
the detection of arrhythmia. As depicted in the results, HiCH
functions were more effective than those of conventional

systems in terms of response time, bandwidth usage, and
storage despite the acceptable accuracy [34]. A low-budget
crowdsourcing architecture, called ParkMaster, was devel-
oped by Grassi et al. [35]. ParkMaster is responsible for the
visual analytics of appraising parking availability. In contrast
with the conventional centralizedmonitoring system that uses
smartphones inside a car, ParkMaster captures a video along
a street also compute the number of cars detected after the
video processing via using ML approaches. The uploading of
the ParkMaster cloud is performed with the results processed
from multiple cars. Data are processed, and a parking slot
is recommended to each driver. Want et al. [36] conducted
a system which aimed to work as a service recommendation
that depend on prediction of QoS in a smartphone edge com-
puting settings. In contrast with several context-aware service
recommendation systems, the suggested system considers
mobility. It then endorses services to other users with the aid
of collaborative filtering algorithms on the basis of mobility
information. As depicted by the results of a series of exper-
iments using data from Shanghai Telecom, high prediction
accuracy could be achieved by the new system.

B. BENEFITS OF ADOPTING ML IN EDGE COMPUTING
In [37], Zissis presented an intelligent intrusion detection sys-
tem to obtain the core of edge computing infrastructure. The
conventional ‘‘self-protecting’’ system developed by IBM
was improved using this system. The proposed IDS smartly
identifies anomalies in devices that can be detrimental to the
entire system by collecting data from sensors while utilizing
the newest unsupervised ML approach. Lastly, evidence that
the concept system developed by [37] the author(s) can detect
incongruities in the real world was found.

Another system for detecting anomalies in edge computing
environments was established by Schneible et al. [38] by
integrating simulated neural networks. The presented model
are assembled in a particular place (for instance the cen-
tralized cloud) in a conventional neural network. Latencies
and congestions are observed near the travel path due to this
feature. The core of the new system is federated learning,
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during which the training data are divided among the edge
devices and a duplicate training model is stored by each
edge device. Then, the training results derived from the edge
devices are computed by the centralized cloud repository.
Enhanced bandwidth, latency, and full usage of computation
power via edge networks can be achieved through the feder-
ated learning mechanism. The problems in distributed attack
detection were further investigated by Abeshu and Chil-
amkurti [39] and then compared with those in nondistributed
attack detection. Such investigation is more challenging to
perform. Themechanisms of traditionalML are considered to
exhibit lower precision and less scalability in edge computing
environments because of the complexities of and variation in
devices. A new scheme based on deep learning (DL) proposed
by [39] has gained popularity because of GPU hardware
improvement and deep neural network theory. As shown
by the results, the DL-based mechanism is superior to con-
ventional approaches. Apart from security concerns, another
crucial aspect of the fog computing environment is privacy.
A privacy protection mechanism based on ML was proposed
by Yang et al. [40] for computing data concerning sensors
and devices in a fog computing architecture. The proposed
approach is supported by this new mechanism; hence, many
data sources can be accepted. In addition, the distribution of
computationally huge tasks to the network edge is achieved
by the system; thus, the system is more scalable than a cen-
tralized system. As indicated by the experiment results, high
precision is achieved by the system without compromising
user privacy. An explanation for traffic engineering in edge
networks was provided by Hogan et al. [41]. Manifold end-
to-end paths may subsist in edge networks with each path
having separate delay and bandwidth. However, the choice
was mentioned is one that perfectly suits users’ requirements
is of utmost concern. The proposed study provided a solution
by computing the results on the basis of portfolio theory, max-
imizing the expected return, and considering the level of risk
(i.e., representation of the expected throughput the lifetime).
Considering the model, ML was used by the [41] to appraise
the risk level for each path. Finally, the suggested solution
was compared with other methods using real-world latency
traces. Improved performance was achieved as predicted by
the solution.

IV. RESOURCE MANAGEMENT IN FOG COMPUTING
Various types of fog computing devices, sensors, and objects
are available, and all of them produce a huge amount
of data that require processing. Real-time processing may
be necessary in certain situations. Devices, sensors, and
objects will fully utilize resources by making requests [42].
Hence, resource management is required in fog computing
and should be carefully implemented [43]. In this section,
we reviewed studies that used ML in fog computing resource
management.

A. COMPUTING IMPROVEMENT
The authors of [9] presented a balanced and faster compu-
tation at a network’s edge to prevent sending raw data to

the cloud through Edge SGD, a decentralized ML algorithm;
a large linear regression problem at the edge of a network
is solved through this computation. Similarly, a novel IoT-
based approach was proposed in [44] by considering a local
paradigm that supports ML algorithms while automating the
management of the system’s components in the computing
section. In [45], ML algorithms were implemented in cloud
servers to recognize and understand music and write the
score automatically using ML methods. The authors adopted
the proposed architecture to achieve an efficient allocation
of computing resources. To solve the problem of big data,
the authors of [46] used DL by shifting the computational
burden from the central server to the fog nodes. Their results
showed that their proposed system is capable of processing
big data. Similarly, an algorithm for data distribution was
introduced in [47] for floating car data (FCD). Its design
enables the proposed algorithm to be immune to the problem
of backhaul connectivity, and thus data loss can be avoided
during periods of connectivity outage. In addition, distributed
data modeling in the fog is favored by the design of the
algorithm; that is, the design allows the feeding of data
collected by the data distribution algorithm to a distributed
set of conditional restricted Boltzmann machines (CRBMs).
In [48], wavelength transform and principal component anal-
ysis (PCA) were used in compressed learning to convert mid-
infrared spectroscopy (MIRS) data into compressed data. Fog
computing and big data processing can benefit considerably
from compressed learning with MIRS because they support
the preservation of computation and communication energy,
the reduction of application latency, the minimization of the
required memory and storage spaces, and the preservation of
scarce rural network bandwidths. Cognition-based communi-
cations, which originate from communication advancements
and AI-based computing, were proposed in [49]. Network
analytics, such as cognitive analytics in a network and a
networking problem, were also provided by implementing
ML. In their work, network application is inclusive of the
allocation of resources for virtualized networks and energy-
efficient network operations. Similarly, the authors of [50]
exerted effort to reduce energy consumption and latency in
fog computing by using ML to detect user behavior and
provide low-latency adaptive MAC-layer scheduling among
sensor devices. A HiCH was proposed in [34] for IoT-based
health monitoring systems. Hierarchical partitioning can be
performed by using the proposed computing architecture
while ML-based data analytics is executed. Table 4 provides
a summary of studies that used ML to enhance computing.

In conclusion, supervised ML techniques (particularly
classification) have been mostly used in time-critical and
healthcare applications, while unsupervised ML techniques,
(particularly clustering) have been used in diverse IoT appli-
cations, such as smart farming and traffic. The primary objec-
tive of implementing supervised and unsupervised ML is to
improve the role played by fog computing at a network’s
edge. The majority of the problems highlighted in Table 4
exhibit an association with the improvement of computing
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TABLE 4. Studies that used ML to enhance computing.

related to the problems of edge device communication, accu-
rate and energy-efficient edge computing, and centralized
computation.

B. DECISION-MAKING
SmartFog was proposed in [51]. It demonstrates low-latency
decision-making and adaptive resource management through
a nature-inspired fog architecture. The function of the human
brain can be emulated using ML through SmartFog. The
authors of [52] focused on situational awareness and the
selection of an optimal path by combiningMLwith aMarkov
logic network. Using the proposed directional mesh net-
work (DMN) framework, time-sensitive signal data are ana-
lyzed near the signal source through diverse ML techniques.
Similarly, the fog device canmake a ‘‘smart’’ decision regard-
ing when the data should be uploaded to cloud back end and
when not to. This decision is achieved with the aid of low-
resource ML on fog devices found near wearables for smart
telehealth. ML techniques were used in the Smart Cargo
concept in [53]. The aim of applying ML was to allow the
evolution of cognition over time by means of decisions made
during various events. Table 5 presents related studies that
were reviewed in this work. In these studies, the authors
improved decision-making in a fog computing environment
using ML.

From Table 5, we can conclude that most of the
studies used unsupervised ML techniques (particularly
clustering) and no supervised ML technique was used.
Moreover, unsupervised ML techniques have been used
to enhance the decision-making ability of fog comput-
ing. Most of the problems addressed are concerned with

computation loads with limited resources and unexpected
situations.

C. RESOURCE PROVISIONING AND DELAY PREDICTION
The authors of [54] proposed an optimum resource provi-
sioning of the distribution and parallelization aspects of an
edge-based DL framework using off-the-shelf components.
Considering these aspects, the resources required by applica-
tions are analyzed. These resources include processing speed
and memory for optimum resource utilization. Similarly,
the authors of [55] focused on provisioning of resources
in multimedia fog computing. They proposed an efficient
algorithm based on sophisticated ML algorithms. The pri-
mary function of this algorithm is predicting the available
resources of fog devices. However, it can also perform other
tasks, such as verifying the accuracy of the rendered results
and optimizing the extent of replicated job assignments.
Meanwhile, the authors of [56] focused on proactive network
association and open-loop wireless communication through
ML; anticipatory mobility management is enabled in this
study. Another study [57] was conducted to predict end-to-
end delay, such as the total amount of time used from the pro-
cessing to the transmission of data, along with link utilization
for different workloads related to image processing [57]. The
authors created a realistic fog computing sandbox using an
image processing ensemble of services in GENI infrastruc-
ture. In [58], the authors solved the energy and communica-
tion problems between end devices with limited resources by
proposing Message Queuing Telemetry Transport, the stan-
dard IoT communication protocol. Real sensor measurements
were predicted using four types ofML algorithm.Meanwhile,
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TABLE 5. Studies on the improvement of decision-making.

TABLE 6. Studies on resource provisioning and delay prediction.

the authors of [59] demonstrated that energy consumption
can be reduced by selecting a valid combination of layers to
implement various steps of ML techniques. Different steps
are involved in ML techniques used in ubiquitous comput-
ing applications; these steps can be implemented in various
layers. Table 6 describes studies that used ML to predict
processing delay and provide resources in fog computing.

From Table 6, a conclusion can be drawn that none
of the studies used unsupervised ML techniques. Instead,
supervised ML techniques (particularly classification) were
used. Enhancing resource provisioning, delay prediction,
and energy consumption in fog computing is the primary
objective in using supervised ML techniques. The problems
addressed were related to resource provisioning, delay pre-
diction, and energy consumption concerning latency and pre-
dicting computation completion time, operational overhead,
and energy consumption.

V. ACCURACY IN FOG COMPUTING
Accuracy issues are improved through fog computing
because its senses, processes, and presents information in
real time. Therefore, fog computing frequently uses data that
reflect of real-time situations [60]. ML techniques contribute
significantly to inaccuracy issues [61]. The combination of
fog computing and ML techniques can solve the accuracy
problem, particularly at the edge of a network. The major
issue that researchers are focusing on is enhancing the accu-
racy of fog computing by implementing ML techniques as
shown in Figure 4.

A. DECENTRALIZED AND REAL DATA ANALYSIS
In [62], the primary objective of the authors was exploring
accuracy against traffic trade-off. They proposed a distributed
hypothesis transfer learning (HTL) with the assumption that
data are moved to a variable number of data collectors where
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TABLE 7. Previous studies that focused on solving the problem of analyzing decentralized and real data.

FIGURE 4. Major issues in accuracy.

partial learning is performed. In [63], the authors intended
to solve the issue related to the processing of large amounts
of data close to the edge of a network. They proposed an
ML technique, referred to as one-dependence estimators,
for the real-time analysis of pregnancy data obtained from
IoT devices and gateways. In [64], the authors improved
the processing of large data generated from smart indus-
tries and cities. They used a popular distributed ML frame-
work (i.e., HTL) and analyzed data on mobile nodes passing
through IoT devices and fog gateways at the edge of net-
work infrastructure. In another study conducted by the same
authors [65], DL was adopted to explore how large amounts
of real-time data streams generated from cyber-physical sys-
tems (CPS) can be handled by edge analytics and cloud and
fog computing. To elucidate previous studies that used ML to
solve the problem of analyzing decentralized and real data,
Table 7 summarizes associated problems, techniques, data,
and apps.

Only supervised ML techniques, particularly classifica-
tion (SVM), were used in these studies based on Table 5.
Supervised learning and DL have been applied in various
ways to improve decentralized and real-data analysis in fog
computing in terms of knowledge extraction and processing
huge amounts of data in real time.

B. NETWORK OVERHEAD AND
COMMUNICATION TRAFFIC
In [66], the authors focused on computation speed because
of the amount of in-the-wild aging data. They proposed a
highly efficient age estimation system combined with the
joint optimization of an age estimation algorithm and a DL
system. Such combination was presented with the architec-
ture of three-tier fog computing, which includes fog, edge,
and cloud layers. In [67], the authors addressed network
latency and bandwidth problems. A universal healthcare
framework, known as UbeHealth, was proposed. Network
traffic is predicted using big data, deep learning, and high-
performance computing. The results are used by the cloudlet
and network layers to optimize data rates, routing decisions,
and data caching. Similarly, the authors of [68] proposed
a distributed learning framework that involves performing
partial data analytics directly on nodes that are responsible
for generating data or nearby ones through distributed ML
techniques. In [69], the authors aimed to solve the problem
of detecting and processing at the sensor level. An early
warning system was proposed to facilitate the detection of
wild animals close to a railway or road such that oncom-
ing vehicles can be alerted about possible crossing animals.
Images captured at the edge of devices can be classified using
ML. Moreover, ML supports the prediction of different time-
varying traffic profiles. Table 8 summarizes related studies
that use ML to overcome network overhead and communica-
tion traffic in fog computing.

From Table 8, DL and supervised ML techniques (particu-
larly classification) were adopted to solve network overhead
and communication traffic problems in fog computing, such
as computation speed with low network bandwidth and detec-
tion problems in huge amounts of data. DL and supervised
ML techniques were used in IoT applications, such as smart
cities and healthcare.

C. DATA PROCESSING ACCURACY
The authors of [70] proposed a new in-network self-learning
algorithm that can be used in a building energy manage-
ment system through a collaborative fog platform to improve
data processing results. This new algorithm can facilitate
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TABLE 8. Studies relevant to overcoming network overhead and communication traffic.

TABLE 9. Studies relevant to data processing accuracy.

the reduction of the total data processing/communication
volume required in entire IoT networks. In [71], two
DL algorithms, called Alex-Net and VGG-Net, were pre-
sented for speech emotion and facial expression recognition,
respectively. A newAI-enabled affective experience manage-
ment (AIEM) was proposed. The composition and architec-
ture of this AIEM were based on three aspects: the accurate
management of emotion recognition, the intelligent man-
agement of emotion data collection, and the real-time man-
agement of emotion interaction. Table 9 summarizes related
studies that use ML to enhance data processing accuracy in
fog computing.

Table 9 shows that DL and supervised ML techniques
(particularly classification) have been applied to improve data
processing accuracy in fog computing in terms of communi-
cation volume and recognition problems. IoT is the foremost
significant application.

D. BIG DATA ANALYSIS
In [72], an innovative system based on cloud and fog com-
puting technologies combined with big data platforms and
IoT was proposed. In this study, novel opportunities for the
provision of new and innovative services were provided to
address the problem of sleep apnea while overcoming the
present shortcomings. The characteristics of the ML mod-
ule were furnished with the MLlib, Apache SparkSQL, and
Scikit-learn 0.18.0 libraries described in the big data ana-
lyzer architecturemodules. Another frameworkwas proposed

in [73] for the early reduction of data from the customer
side. This framework also presents a business model for end-
to-end data reduction in enterprise applications. The results
of this study showed that privacy, trust between enterprises
and customers, secure data sharing, and utilization cost were
improved. Table 10 presents related studies that used ML to
analyze big data in fog computing.

From Table 10, a conclusion can be drawn that supervised
ML techniques (classification) and unsupervised ML tech-
niques (dimensionality reduction) have contributed signifi-
cantly to big data analysis, which a key problem in fog is
computing. Big data reduction and real-time preprocessing
are the major problems addressed in medical care and sus-
tainable enterprises.

E. PRIORITY AND PREDICTION
In [74], a framework for cyber-healthcare and its imple-
mentation were introduced. The framework, which is fog-
based with a multilayer architecture, focuses on a patient’s
condition recognition system that uses ML techniques as a
major constituent of the framework. To support the handling
of complex data in terms of speed, variety, and latency,
the researchers in [75] introduced a patient-centric IoT e-
health ecosystem with a multiplayer architecture that consists
of (1) a device, (2) fog computing, and (3) cloud. This system
is based on hierarchical temporal memory (HTM), which is a
biologically inspired ML unsupervised intelligence technol-
ogy. The HTM ML module is fed with the generated sparse
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TABLE 10. Related studies that analyzed big data.

TABLE 11. Summary of related studies on prediction and priority problems.

distributed representations. Moreover, GraphLab, which is a
scalable and fast ML platform, was used in big data analytics.
Table 11 summarizes related studies that used ML to solve
prediction and priority problems in fog computing.

As shown in Table 11, supervised (e.g., regression and
classification) and unsupervised (e.g., HTM) ML techniques
can solve the priority and prediction problems in fog com-
puting. In this section, researchers addressed the problems of
healthcare applications in terms of recognizing the condition
of patients with chronic diseases.

VI. FOG COMPUTING SECURITY
Users are expected to be provided with secure and reliable
services when they use IoT networks; that is, trust should
exist among all the devices in a fog network [21]. Cloud
or fog is considered a suitable location by data services to
analyze and identify which data require a certain action, and
thus increase security by making the data anonymous. The
prevalence of cyber threats is high in distributed systems, and
the tendency of developers to prioritize supporting functional
systems before incorporating security features heightens such
threats [22]. The security levels of fog computing and the
corresponding ML solutions are divided into device security,
network security, and data security. Furthermore, we clas-
sified the existing literature by highlighting the problem,
ML technique, dataset, application, accuracy, and attack type
in each article listed in Table 12.

Several authors have proposed approaches associated with
the protection of data privacy. Yang et al. [40] used a linear
regression algorithm to propose a privacy protection mech-
anism based on ML. This mechanism can support a vari-
ety of data sources because it has a provision for a multi-
functional data aggregation method [40]. By using this new
mechanism, computationally heavy tasks are distributed to
the network’s edge to improve the scalability of a system. The
experimental results indicated that a high accuracy of 90%
was achieved by the proposed system without compromising
user privacy. To enhance the efficiency of query evaluation,
Zhu et al. [79] applied a neural network, linear regression,
boost, ensemble bag, and SVM with differential privacy on
simulated and real datasets. Their results demonstrated that
the use of a prediction model facilitated the elimination of
the mean absolute error and the preservation of data pri-
vacy. With a target to provide end-to-end security at the
fog layer for IoT devices, in [84] author have presented a
novel Fog Security Service (FSS) based on two cryptographic
schemes, identity-based encryption, and identity-based sig-
nature. Number of services have provided by FSS such as
authentication, confidentiality, and non-repudiation. The FSS
have evaluated and implemented in an OPNET simulator
using a single network topology with different traffic loads.
In [85] a novel security ‘‘toolbox’’ have proposed, the main
goal was to strengthen the integrity, security, and privacy
of SCADA-based IoT critical infrastructure at the fog layer.
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TABLE 12. Reviewed literature based on several aspects.
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The toolbox integrates two key features: on the cloud level
a cryptographic-based access approach have used and sig-
nature schemes at the fog layer. In terms of evaluation for
the proposed work, authors presented a prototype to prove
the suitability of the suggested platform in a real-world
application.

In summary, the databases of social IoT systems must
be protected from cyberattacks. Efficient privacy protec-
tion can be achieved using advanced differential privacy
approaches that can provide data immunity against vulner-
abilities and enhance query evaluation while supporting ML
algorithms [77].

With regard to data availability, deep ransomware threat
hunting and intelligence system (DRTHIS) was proposed
in [78] to facilitate the detection of ransomware while iden-
tifying its family within the first 10 s that the application
is executed. The proposed system can be deployed on the
fog layer to function as a completely automated mechanism
of ransomware detection. In DRTHIS, two DL techniques
(LSTM and CNN), are commonly used for classification
using the softmax algorithm. In the experiments, the DRTHIS
was trained using 220 Cerber, 220 Locky, and 200 TeslaCrypt
ransomeware samples and 219 goodware samples. The results
showed that DRTHIS achieved an F-measure of 99.6% during
evaluations and a true positive rate of 97.2% in the classifica-
tion of ransomware cases.

With regard to suspect surveillance and communication
protection, the authors in [37], [80], [81], [83] intrusion
detection systems have introduced, using real world vessel
sensor data streams and real phishing cases in [37], [80],
the accuracy that have is achieved 90% by SVM classifier
and 98.4% accuracy for phishing detection using fuzzy logic
and multilayer feedforward neural network and. However,
[81], [83] used synthetic dataset to evaluate their proposed
methods. In the same time the accuracy with 86.53% have
achieved on NSL-KDD dataset in [82] and 94% in ADFA-LD
and 74% in ADFA-WD in [84], respectively. Finally, in [82] a
solution of communication protection have proposed by using
a supervised ML that performed in two phases offline and
online.

In terms of privacy protection and disease prediction,
the authors of [76] used fuzzy k-nearest neighbor–case-based
reasoning to develop a privacy-aware disease prediction sup-
port system, which is capable of protecting the sensitive
information of patients from unauthorized users. Paillier’s
homomorphic cryptosystem was adopted to fortify the secu-
rity of the system by encrypting sensitive patient information.
An experiment was then conducted using the Indian Liver
Patient Dataset. The results showed that high sensitivity,
accuracy, and specificity of 90.42%, 99.28%, and 96.74%,
respectively, were achieved by the proposed system. Mean-
while, a hybrid privacy-preserving clinical decision support
system was developed for use in cloud and fog computing
environment. This system was designed based on a neu-
ral network, Paillier’s encryption with threshold decryption,
and another building block that can facilitate the secure

FIGURE 5. Fog computing challenges and open issues.

monitoring of patients’ health condition is real-time settings.
The Breast Cancer Wisconsin (Diagnostic) Dataset from the
University of California, Irvine ML repository was used in
the experiment. The experimental result reported that a pre-
diction rate and an error rate of 97% and 0.2%, respectively,
were achieved by the system.

VII. CHALLENGES AND OPEN ISSUES
In fog computing, different types of data from the edge
network environment and heterogeneous sensors comprise
data sources. Collected data may consist of several types,
including ambiguous and incomplete data, which complicate
a system.

Figure 5 lists the challenges in fog computing that are
relevant to resource management, accuracy, and security.
Additional details are provided in the next subsections.

A. RESOURCE MANAGEMENT AND ACCURACY
CHALLENGES
The majority of applications worldwide are facing the chal-
lenge of managing data processing at the edge of a net-
work (fog). Although fog computing has overcome many
processing problems by providing preprocessing and shifting
processing to the edge of a network instead of relying on
central processing, various problems in fog computing should
still be overcome. ML has contributed considerably to the
management of data processing. An appropriate application
ofML to fog computing will significantly improve the overall
system. Subsequently, we summarize the challenges and open
issues in processing and computation management in fog
computing.
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1) COMMUNICATION AND PROCESSING OF EDGE
AND FOG DEVICES
The emergence of fog computing as a novel paradigm has
enabled the processing, storage, analytics, and networking of
data. Analytics is performed closer to the edge of applications
and devices [9]. DL, ML, and AI should be implemented
in time-critical applications in fog computing networks to
enhance latency, energy efficiency, and reliability require-
ments in terms of processing and communication issues
[50], [67]. Adaptability and accuracy levels may be reduced
when data are completely outsourced to a fog network
because of the limitation in computational capacity of edge
nodes [34]. A fog architecture should be capable of scaling
and adapting to overcome the unpredictable loads of dis-
tributed applications [51]. The growing number of sensors
and data demands increases constraints in communication
and energy, and thus produce new challenges that require
efficient IoT cloud architectures [58]. Extant DL platforms
have limited computational speed, which leads to processing
and communication problems, particularly with the increas-
ing amount of in-the-wild data [66]. The energy consumed by
edge devices and end-to-end delay can be reduced when pro-
cessing is performed at the sensor level [69]. Data processing
results can be improved significantly by using a self-learning
algorithm, and the total data processing/communication vol-
ume required in the entire IoT network can be reduced [70].
New opportunities for the development of novel and
innovative services can emerge if fog and cloud com-
puting technologies are combined with big data and IoT
platforms [72].

2) BIG DATA ANALYSIS AND PROCESSING
A huge amount of data that require processing and anal-
ysis are generated by IoT. A major challenge is the lack
of cognitive ability and domain knowledge of computers
[45]. Moreover, one of the challenges associated with the
adoption of numerous sensors is that good performance
and processing efficiency are not guaranteed by the exist-
ing inspection system [46]. Processing and analyzing large
amounts of data at a network’s edge, where these data are
generated, require real-time data analysis. To perform such
an analysis, an ML technique referred to as averaged one-
dependence estimators must be implemented. The aforemen-
tioned problems can be solved by combining DL with fog
computing [54], [63]. The distribution of IoT and personal
mobile devices will produce a huge amount of data, and cen-
tralized cloud-based analysis will be insufficient and unable
to handle that much data [64]. The accurate and scalable
extraction of multiscale features in multilevel representation
from large-scale unlabeled signals required for the output
of the system remains as a major challenge that should be
addressed [65]. Big data reduction at a fog network will
overcome the problem of processing resources and con-
siderably reduce the cost and energy of using cloud-based
analysis [73].

3) CENTRALIZED DATA PROCESSING
Centralized cloud-based processing causes latency. By con-
trast, real-time data distribution in fog rather than being
centralized in cloud contributes substantially to data pro-
cessing latency, particularly with the use of ML analytics
for prediction [47]. Similarly, the transfer of raw data to a
centralized cloud for processing is currently infeasible due
to the lack of Internet connectivity and the huge amount of
data generated from various applications [48]. One of the
aforementioned applications is telehealth, in which medical
big data are generated. Transferring these big data to cloud is
time-consuming and may cause a delay in processing, which
is undesirable, particularly for medical data [32]. Energy is
another important issue that should be considered in process-
ing data. Given that big data require considerable process-
ing power, cloud computing can process huge amounts of
data but will consume a substantial amount of energy [59].
Therefore, when the control of computing applications, data,
and services is eliminated from the central ‘‘cloud’’ and
transferred to the fog using of ML and DL techniques, then
the ability to handle critical situations and provide real-time
processing will be improved [53].

4) KNOWLEDGE EXTRACTION
Knowledge extraction from raw data collected by sensors
may be achieved in cloud computing. However, with the
rapid increase in the number of sensors, which will produce
a huge amount of data, this approach may become chal-
lenging. The decentralization of computation (fog) for data
analysis, with the aid of ML, will overcome these issues [62].
A combination of cloud and fog computing nodes with DL
algorithms can also contribute significantly to knowledge
extraction and create good user experience [71]. In health-
care systems, a transition from clinic-centric treatment to
patient-centric healthcare and the extraction of quantitative
vital signs is crucial for determining a patient’s medical
condition [74], [75].

B. SECURITY CHALLENGES
This Section discusses the challenges and open issues of Fog
computing security regarding architecture and techniques
terms. To get a comprehensive view of the challenges and
constraints of Fog computing security issues and their cat-
egories. Figure 6 presents Fog computing security and their
challenges and open issues.

1) CHALLENGES RELATED TO ARCHITECTURE
a: TRUST
Fog computing devices are frequently deployed without strict
monitoring and protection, and thus they are exposed to all
types of security threats. Accordingly, the primary challenge
is increasing the trust aspect at the fog level. One of the
techniques that can partially solve this issue is a public key
infrastructure. In addition, the trusted execution environment
may exhibit a potential in fog [86]–[89]. The open network
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FIGURE 6. Security challenges in fog computing.

environment of fog allows malicious procedures to spread
easily to intelligent devices and pose a serious threat to user
data [90]. Controlling and avoiding the spread of malicious
procedures are critical for a trusted execution environment
[40], [76], [79].

b: AUTHENTICATION
Authentication is a serious problem in fog computing security
because services are offered to massive-scale end users by
front fog nodes. To access fog network services, a device
has to first become part of the network by authenticating
itself in the fog network. This step is essential to prevent
the entry of unauthorized nodes. It also poses a formidable
challenge because the devices involved in a network are
constrained in variousways, including power, processing, and
storage [21], [40], [76]–[79].

c: WIRELESS SECURITY
Fog computing platforms consist of wireless sensors and
IoT devices. Thus, ensuring fog network security is difficult
due to the volume and visibility of wireless devices. If it is
not hidden and secured, then a wireless network provides
unprecedented freedom to attackers to intercept sensitive data
during transmission. Therefore, internal and external wireless
communications with end-user devices in the fog platform
should minimize packet sniffing, rogue access points, and
similar challenges by implementing encryption and authen-
tication procedures [77].

d: END USER’S PRIVACY
Nowadays, the concerns of users have been raised in terms of
breaching to their private information such as personal data,
location, and other information [91]. Thus, such information
elicits attention when end users use services, such as cloud
computing, wireless networks, and IoT. Hence, preserving
privacy in fog is facing different challenges because the fog
nodes located within the vicinity of end users can collect
more sensitive information than a remote cloud in the core
network. Privacy preservation is challenging in fog comput-
ing because fog nodes within the vicinity of end users may
collect sensitive data regarding the identity, usage of utilities

(e.g., smart grids), or location of end users.Moreover, central-
ized control becomes difficult because fog nodes are scattered
in large areas. A poorly secured edge node can function as
the entry point to the network for an intruder. Once inside the
network, the intruder can mine and steal user’s private data
that are exchanged among entities [21], [76].

e: MALICIOUS ATTACKS
The fog computing environment can be subjected to numer-
ous malicious attacks, and thus without convenient secu-
rity measures in place, the capabilities of a network may
be severely undermined. A DoS attack is a malicious
attack. Given that the majority of devices connected to a
network are not mutually authenticated, launching a DoS
attack is easy. Another way to launch a DoS attack is
to spoof the addresses of multiple devices and send fake
processing/storage requests. Existing defense strategies for
other types of networks are unsuitable for the fog comput-
ing environment because of the openness of its network.
The first major challenge is the size of a network.
Hundreds and thousands of nodes that form an IoT
network potentially avail of fog/cloud services to over-
come computation and storage limitations and enhance
performance [21].

2) CHALLENGES RELATED TO TECHNIQUES
a: MODEL PRIVACY
To reduce local computation overhead, classification models
provided by a health service provider can be outsourced to
cloud or fog servers for decision-making purpose. Given that
classification models are considered assets by health service
providers, models should also be protected [77].

b: VOLUME AND VARIETY
ML is crucial for fog computing security due to data vol-
ume and variety. AI and ML are fast-growing fields, and
IoT data analysis should be on par with the latest trends
in these areas. A review of several ML techniques and dif-
ferent IoT examples indicates that analyzing data in near
real time at the proximity of a node is important. Therefore,
research on ML that does not require a large memory and
can process a huge amount of time series data should be
conducted [5].

c: FLEXIBLE
Supervised ML has been used to reduce subsets of appro-
priate security schemes by prioritizing various trade-offs
involved in IoT applications. The manner in which flexible
security is handled is a major problem. Flexible security
allows a user to select the most appropriate security with a
high level of flexibility. The primary objective of using flex-
ible security is to secure an IoT-based application depending
on the requirements of the users and the constraints of the
edge resources [82].
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d: DETECTION METHODOLOGY
Two classes of attack detection are used in IoT: anomaly-
based and signature-based detection. Signature-based detec-
tion involves identifying an attack by collecting specific data
from a device and then comparing these data with a set of
rules or patterns referred to as a signature. Anomaly-based
detection involves building a model that contains samples
of normal behavior and that deviates from the model for
identifying suspicious behavior or attack on a device [92].
However, zero-day attacks cannot be detected using these
approaches. The major concern is the detection of attacks
whose signatures cannot be found in the set of predetermined
rules or patterns [81].

e: CRYPTOGRAPHY ISSUE
In general, extant cryptosystems are specifically developed
for the encryption of integer values. They can also perform
a few simple calculations that may influence the results and
may even lead to incorrect diagnosis. One of the biggest
challenges in this area is obtaining secure and accurate diag-
nosis [77]. In the majority of recent studies, cryptography
has been used to preserve the privacy of sensors [93], [94].
Nevertheless, cryptography should maintain the encryption
keys, but it is unable to handle situations wherein data sharing
with the public is required. At present, differential privacy is
widely adopted to address issues associated with privacy [95].
The key concept behind differential privacy is to release query
results instead of distributing datasets to clients. However,
this procedure may be unsuitable for CPS because a large
amount of queries or information must be exchanged daily
between the system and its clients. In such case, a large
volume of noise has to be introduced into the released queries;
this condition poses an obstacle to the implementation of
differential privacy in CPS [79].

VIII. CONCLUSION
ML exhibits an excessively high potential to be the key tech-
nology inmany domains. It can be considered a powerful ana-
lytic tool for fog computing applications. Despite the latest
success of ML applications in fog computing, the literature
on ML with regard to its role in fog computing services
and systems remains scarce. The current work investigates
this gap. To the best of our knowledge, no study has been
conducted yet to examine the role ofML in the fog computing
area. Accordingly, our research presents the involvement of
ML in three aspects of fog computing: resource management,
accuracy, and security. In contrast with accuracy and security,
ML has been widely adopted to address many problems
pertinent to resourcemanagement in fog computing. As a part
of cloud computing layers, edge computing with ML has also
been included. Numerous challenges and open issues have
been addressed in this work. However, the more challeng-
ing aspect is security because fog computing shares many
properties with cloud computing. The most popular ML task
adopted in fog computing is supervised learning. In terms of

application, ML with fog computing has been widely applied
in the healthcare domain. Lastly, ML considerably impacts
the improvement of fog computing applications and services.
Therefore, researchers and developers should consider the
advantages ofML to address various problems and challenges
in diverse applications of fog computing.
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