

DETERMINING THE INFLUENTIAL FACTORS OF

CONDUCTING NON-FUNCTIONAL TESTING

IN AGILE SOFTWARE DEVELOPMENT

ASHWINESH C GANAPATHI

A Dissertation Submitted to the College of Graduate Studies,

Universiti Tenaga Nasional in Fulfilment of the Requirement for the

Degree of

Master of Software Engineering

 MARCH 2020

i

DECLARATION

I hereby declare that the dissertation is my original work except for quotations and

citations which have been duly acknowledged. I also declare that it has not been

previously, and is not concurrently submitted for any other degree at Universiti Tenaga

Nasional or at any other institutions. This thesis may be made available within the

university library and may be photocopied and loaned to other libraries for the purpose of

consultation.

ASHWINESH C GANAPATHI

Date : 6TH MARCH 2020

ii

ABSTRACT

Non-functional requirements define the systems attributes such as performance, security,

etc. Even though these requirements are important in a system, they are known to be left

out due to various factors, most commonly due to time and budget of a project. Agile

software development practices have become a preferred approach in software

development due to the ability to deliver an end product at a short period of time.

However, in agile software development, there is no phase specifically defined for

requirement elicitation which diverts the agile team members focus away from non-

functional requirement testing and focus is put mainly toward functional testing instead.

In this study, we identify the factors influencing non-functional testing, we discover the

challenges faced in conducting non-functional testing and what are the practices that can

be adopted to successfully conduct non-functional testing agile software development

projects. Therefore, a detailed literature review was conducted to identify the factors,

challenges and practices gathered from previous studies to be included in the survey. A

quantitative approach was used whereby a set of questionnaires consisting statements

related to factors, challenges and practices were distributed in Malaysia. An expert review

was conducted to validate the survey. SPSS Version 26 was used to analyze the data

obtained from the survey whereby various statistical tests were administered. As a result,

this study identified thirteen factors influencing non-functional testing, six main

challenges faced in conducting non-functional testing and seven practices that can aid in

the process of conducting non-functional testing in an agile environment. The findings

from this study would benefit agile team members to have a better understanding of the

significance of conducting non-functional testing and at the same time serve as a guide

for agile team members in conducting non-functional testing.

iii

ACKNOWLEDGEMENTS

Firstly, I would like to thank all the staff members of Universiti Tenaga Nasional for

assisting me and providing me with the required knowledge during my master studies. I

owe my deepest gratitude to my research advisor, Assoc. Prof. Dr. Roslan Ismail, whom

guided and provided me with continuous support throughout the whole process of the

dissertation.

Most importantly, I would like to thank my parents, C Ganapathi & Shamini, for their love

and being the main pillars of support throughout my journey. Special thanks to Yoganesh,

Dharshini, Dhaarini, P.A.B & Thashini for believing in me.

iv

TABLE OF CONTENTS

DECLARATION ... i

ABSTRACT ... ii

ACKNOWLEDGEMENTS ... iii

TABLE OF CONTENTS .. iv

LIST OF TABLES .. vii

LIST OF FIGURES .. ix

ABBREVIATIONS .. x

CHAPTER 1 INTRODUCTION ... 1

1.1 Introduction .. 1

1.2 Background of the Study .. 1

1.3 Problem Statement ... 3

1.4 Research Questions .. 5

1.5 Research Objectives ... 5

1.6 Significance of the Study ... 6

1.7 Scope of the Research .. 6

1.8 Structure of the Remaining Chapters ... 7

CHAPTER 2 LITERATURE REVIEW ... 8

2.1 Introduction .. 8

2.2 Agile Software Development ... 8

2.3 Agile Software Testing ... 11

2.4 Non-Functional Requirement ... 15

2.5 Factors influencing the testing of NFR .. 20

2.6 Summary of factors influencing the testing of NFR .. 26

v

2.7 Summary .. 28

CHAPTER 3 METHODOLOGY .. 29

3.1 Introduction .. 29

3.2 Research Design ... 29

3.3 Expert Review .. 31

3.4 Data Collection ... 31

3.4.1 Survey Sample ... 32

3.4.2 Research Instrument .. 32

3.5 Quantitative Approach ... 33

3.6 Data Analysis ... 34

3.7 Summary .. 34

CHAPTER 4 RESULTS AND ANALYSIS ... 35

4.1 Introduction .. 35

4.2 Descriptive Information of Respondents .. 35

4.2.1 Gender .. 36

4.2.2 Education Background ... 37

4.2.3 Knowledge on Agile Software Development .. 38

4.2.4 Involvement in Software Development Process .. 39

4.2.5 Knowledge on Software Testing.. 40

4.2.6 Involvement in Testing of Non-Functional Requirements 41

4.2.7 Work Experience ... 42

4.2.8 Summary of the Respondents’ Demographic Information 43

4.3 Descriptive Statistics Representation ... 44

4.4 Reliability Analysis .. 50

4.5 Kaiser-Meyer-Olkin and Bartlett’s Test ... 51

vi

4.6 Exploratory Factor Analysis ... 52

4.7 Summary .. 56

CHAPTER 5 DISCUSSION AND CONCLUSION ... 57

5.1 Introduction .. 57

5.2 Study Overview .. 57

5.3 Discussion of Results ... 58

5.4 Factors, Challenges & Practices ... 59

5.5 Accomplishment of Research Objectives ... 64

5.6 Implications .. 65

5.7 Limitations .. 66

5.8 Recommendations for Future Work ... 66

5.9 Conclusion .. 67

REFERENCES .. 78

APPENDIX A: QUESTIONNAIRE ... 78

APPENDIX B: EXPERT REVIEW ... 81

vii

LIST OF TABLES

Table 1. 1 Structure of the Remaining Chapters .. 7

Table 2. 1 Difference between Traditional and Agile perspective on Software

Development .. 9

Table 2. 2 Difference between Traditional and Agile Software Testing 11

Table 2. 3 Difference between Functional Testing and Non-Functional Testing 16

Table 2. 4 Definitions of NFR from Various Authors ... 17

Table 2. 5 Relevant NFRs on Different Application Domains .. 19

Table 2. 6 Solutions established to handle the issues... 23

Table 2. 7 Practices established to handle the factors .. 25

Table 2. 8 Summary of the factors influencing NFR testing ... 27

Table 4. 1 Descriptive Information of Respondents’ ... 43

Table 4. 2 Mean Score interpretation ... 44

Table 4. 3 Mean Score for ASD Methodology .. 44

Table 4. 4 Mean Score for Software Testing (Non-Functional Testing) 45

Table 4. 5 Mean Score for Non-Functional Testing Process ... 46

Table 4. 6 Mean Score for Factors influencing Non-Functional Testing 47

Table 4. 7 Mean Score for Challenges Faced When Conducting Non-Functional Testing

 .. 48

Table 4. 8 Mean Score for Practices to Adopt for Conducting Better Non-Functional

Testing .. 49

Table 4. 9 Mean Score for Reliability range of Cronbach’s Alpha 50

Table 4. 10 Overall Cronbach's Alpha ... 50

Table 4. 11 Independent Cronbach's Alpha ... 51

Table 4. 12 KMO and Bartlett’s Test ... 52

Table 4. 13 Codes and Variables Items .. 53

Table 4. 14 Pattern Matrix of Exploratory Factor Analysis ... 55

viii

Table 5. 1 Factors Influencing Non-Functional Testing .. 61

Table 5. 2 Challenges Faced When Conducting Non-Functional Testing 62

Table 5. 3 Practices to Conduct Better Non-Functional Testing 63

ix

LIST OF FIGURES

Figure 2. 1 Plan-Based Development and Agile Development (I. Sommerville, 2011) .. 10

Figure 2. 2 Key Factors to Perform Agile Software Testing ... 13

Figure 2. 3 Agile Testing Quadrants (Crispin L and Gregory J, 2009) 14

Figure 3. 1 Research Approach .. 30

Figure 4. 1 Gender.. 36

Figure 4. 2 Education Background .. 37

Figure 4. 3 Knowledge on Agile Software Development .. 38

Figure 4. 4 Involvement in Software Development Process .. 39

Figure 4. 5 Knowledge on Software Testing ... 40

Figure 4. 6 Involvement in Testing Non-Functional Requirements 41

Figure 4. 7 Work Experience ... 42

x

ABBREVIATIONS

ASD Agile Software Development

EFA Exploratory Factor Analysis

FR Functional Requirements

KMO Kaiser–Meyer–Olkin

NFR Non-Functional Requirements

RE Requirements Engineering

SPSS Statistical Package for the Social Sciences

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

In this chapter, we explore the background of the study. Other than that, we dive into the

problem statement and present the research goals, research questions, explain the

importance of this study and finally the research scope. We listed down the structure of

the paper at the end of this chapter.

1.2 Background of the Study

Agile development methodology has been taken notice and become a preferred approach

to adopt by projects due to the ability of delivering high-quality software in a short

timespan (Alexander T, 2018). The ability to lessen the developement period has made

the process more preferred compared to the traditional software processes. Due to business

processes evolving everyday as well as the complexity, IT firms strive to stay ahead of

the competition by squeezing deadlines (Bose S, Kurhekar M and Joydip G, 2014). Teams

adopting the agile methodology have the luxury of flexibility and changeability in their

projects. The main characteristics of agile development are adaptability, people-oriented,

more code-based and lesser documentation compared to traditional processes which are

more predictive and process-based (Agile Manifesto, 2014). However, with all these

benefits come risk, as the reduce in time period, results to expediting or leaving out certain

processes; in this case, non-functional testing.

2

Software testing is a crucial process in a software development life cycle as it points out

the failures or defects that were made during the development phase. It is the process of

validating the system components or system requirements by using either manual methods

or automation tools to confirm whether the requirements are fulfilled and to ensure the

actual results are in line with the expected results (Itti H and Rajender S, 2015). While

some errors are not damaging, others can lead to extremely expensive additional cost to

the project. Software testing process involves creating test cases from the identified

requirements to achieve the desired quality of the system, which are done by requirements

and testing specialists. But in agile development, this cannot be done as agile development

does not contain a phase to gather requirements and perform analysis. Therefore, no test

cases will be created without a set of requirements to do so and without any test cases,

software testing cannot be conducted.

Non-functional requirements define the systems attributes which includes security,

performance, etc. As a matter of fact, the system’s quality as a whole is defined by non-

functional requirements. Identifying and prioritizing the non-functional requirements are

known to be complex as noticed in the traditional software development methodology

(Eliane, F. C, 2012) (Mylopoulos J, Chung L and Nixon B, 1992) and this is purely

because the nature of non-functional requirements does not appear visually and does not

have an effect on the system’s features or functions. Technical requirements are what non-

functional requirements are known as, and these technical requirements often relate and

involve certain functional requirements (Ambler S. W, 2008). Without a doubt non-

functional testing is significant in determining a project’s success (Lawrence B, Wiegers

K & Ebert C, 2001), however functional requirements are usually the priority in a project

when compared to non-functional requirements (Martens N, 2011). Since, there’s not a

phase defined specifically for requirement elicitation in Agile Software Development

(ASD), non-functional testing is known to be left out or considered as low risk.

A compilation of factors listed by various other researches are stated in the upcoming

chapters.

3

1.3 Problem Statement

Agile development has changed the way of software development process. The ability to

deliver a working software with a quick turnaround time span has always been the upmost

priority in the customers perspective. Up to that point, requirements elicitation has been a

key process in a software development process. It is the phase where a set of requirements

of the system is collected for software testers to create test cases from the requirements to

ensure the quality set is achieved. However, due to the structure of ASD, this is no longer

feasible as there is no phase established for requirements elicitation to produce the

requirements in order to proceed with the software testing process.

Although software testing will be conducted in the software development process, due to

the fact that there is no proper set of requirements, it is clear that the software testing

would not be conducted as thorough as needed. Software testing is a process of error

identifying and the validation of the system’s actual results with the expected results. One

of the key processes of requirements engineering is discovering requirements in a software

engineering design process (Hanan, H., Rocky, S., Jianwei, N., & Travis, D, 2017).

Priority is always given to functional testing as it tests the behavior and execution of the

system itself. In other words, the software should be able to do what it is intended to.

Meanwhile, non-functional testing checks the system’s ability to complete a certain task.

This might seem like a background process but it is a critical aspect of a system as it

concerns the performance and security of the system.

Non-functional requirements testing is not being considered as an important part of a

software development process (Bahiya M and Abdelhamid M, 2015). They are placed into

a low-risk category because of their characteristics as compared to functional

requirements (R. Cristina, M. Sabrina and S. Daniela, 2016). Not conducting non-

functional testing has become a norm till requested to do otherwise. When an issue

4

regarding the performance of the system is brought up by a customer, usually that is when

the performance of the system will be looked into. Customers are the main priority when

it comes to agile development. However, due to their limitation and knowledge of the

background processes of a system, their focus would be more towards the business side

and assume the technical aspects will be handled by the development team.

One of the common factors identified in the negligence of conducting non-functional

testing is time (R. Cristina, M. Sabrina and S. Daniela, 2016). The need for more time to

perform non-functional testing is the main challenge in ASD as the process focuses on

rapid implementation and delivery which makes team member to ensure the functionality

of the system works to be considered as a working system. By not performing non-

functional testing, the overall quality of the software is at risk.

5

1.4 Research Questions

1) What are the reasons for agile team members to ignore or not conduct the testing

of non-functional requirements?

2) What are the challenges faced by agile team member when conducting non-

functional testing?

3) What are the practices used by agile team members to overcome obstacles when

conducting non-functional testing?

1.5 Research Objectives

The overall objective of the study is to help agile team members to have a better

understanding on the significance of non-functional testing. Listed below are specific

objectives of the study:

1) To identify the influencing factors and challenges of conducting non-functional

testing in agile software development.

2) To validate the factors influencing non-functional testing in agile software

development.

3) To propose the practices that can be adopted by agile team member when

conducting non-functional testing.

6

1.6 Significance of the Study

This research is important to help agile team members to have a better understanding on

the significance of non-functional testing. We aim to determine the influencing factors of

conducting Non-Functional Requirements (NFR) in ASD. By doing so, agile team

members are able to plan ahead and expect the obstacles they might face in the process

beforehand of conducting non-functional testing. This study shares the practices used by

agile team members to ensure proper non-functional testing can be conducted. This study

will help improve the understanding and knowledge of agile team members on the non-

functional testing process.

1.7 Scope of the Research

Agile methodology is practiced in large number of projects due to its advantages but an

important process that can help improve the end product is being overlooked which is

the non-functional testing. In this study, we determine the influencing factors of

conducting non-functional testing in ASD, what are the obstacles that they go through

when conducting the process and what practices can be used to be able to conduct non-

functional testing in their projects. Existing factors identified from previous studies were

reviewed to be validated in this study as well. An expert review was conducted to

validate the survey built to ensure that the data to be collected aligns with the objective

of the study. Finally, Statistical Packages for the Social Sciences (SPSS) was used to

analyzed the results gathered by using various statistical tests.

7

1.8 Structure of the Remaining Chapters

The remaining dissertation is organized as follows.

Table 1. 1 Structure of the Remaining Chapters

Chapter Summary

2: Literature Review In this section, we will dive into previous work that pertains ASD, software

testing and non-functional testing. Mainly, we will review the factors

influencing non-functional testing from previous studies. Other than that, we

will include the challenges faced in conducting non-functional testing and

the practices to overcome those challenges that were identified by several

previous studies.

3: Methodology This section focuses on the methodology utilized to conduct this study. It

explains the direction in how the research plans to gather be able to answer

the questions opposed in the research study. Other than that, data collection

and data analysis methods will be stated.

4: Results and Analysis In this section, we present the findings from the data collected. Statistical

tests in SPSSS are used to analyze and validate the obtained data.

5: Discussion and

Conclusion

In this section, we present the final findings attained from the analyzed data.

This chapter also highlights implications, limitations and recommendations

for the future work.

8

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

We present the literature related to this study and mainly to the research objectives.

Particularly, we highlight the definitions related to this topic. Furthermore, we will review

the existing findings of factors influencing NFR testing.

2.2 Agile Software Development

ASD has impacted the way on how software is developed worldwide (D. Tore & D.

Torgeir, 2009). In the IT industry, this is solely due to the fact that by utilizing the agile

development method, companies are able to squeeze in tight deadlines for projects (S.

Bose, M. Kurhekar and G. Joydip, 2014). The challenge software engineering faces these

days is to produce a fully functioning system immediately upon request due to the increase

in competition.

Comparing both agile and traditional methods, the traditional method abides a sequence

where the project is completed by stages which means the project will not be able to move

on without completing a current stage. Whereas, the agile methodology practices an

iterative approach to rapidly deliver a complete system and during the process a particular

stage can be revisited if required (D. Morelos, 2011).

9

There are many other differences between the two approaches and Table 2.1 highlights

them (S. Nerur and V. Balijepally, 2007).

Table 2. 2 Difference between Traditional and Agile perspective on Software

Development

 Traditional view Agile perspective

Design process Deliberate and formal, linear

sequence

of steps, separate formulation and

implementation, rule-driven

Emergent, iterative and exploratory,

knowing and action inseparable, beyond

formal rules

Goal Optimization Adaptation, flexibility, responsiveness

Problem-solving

process

Selection of the best means to

accomplish a given end through

well-planned, formalized activities

Learning through experimentation and

introspection, constantly reframing the

problem and its solution

View of the

environment

Stable, predictable Turbulent, difficult to predict

Type of learning Single-loop/adaptive Double-loop/generative

Key

characteristics

Control and direction

Avoids conflict

Formalizes innovation

Manager is controller

Design precedes implementation

Collaboration and communication;

integrates different worldviews

Embraces conflict and dialectics

Encourages exploration and creativity;

opportunistic

Manager is facilitator

Design and implementation are

inseparable and evolve iteratively

Rationality Technical/functional Substantial

Theoretical

and/or

philosophical

roots

Logical positivism, scientific

method

Action learning, John Dewey’s

pragmatism, phenomenology

Agile method allows customer to be engaged with throughout the development process

where their inputs and suggestions for improvements will be gathered to ensure

satisfactory in the finished product. As opposed to the traditional method where the

involvement of the customers will take place at the initial phase but have limited

involvement as soon as the software development process begins.

10

Figure 2. 1 Plan-Based Development and Agile Development (I. Sommerville, 2011)

Based on Figure 2.1, author Ian Sommerville explains that in an agile approach, the design

and implementation activity is the heart of the project. Phases such as requirement

elicitation and testing are integrated together with the design phase. Whereas traditional

methods known as plan-driven depend on the output phase by phase to proceed and plan

for following activities. In a nutshell, ASD does not have an established phase dedicated

for requirement elicitation that can produce a set of requirements needed for testing

process.

11

2.3 Agile Software Testing

Software testing examines whether the actual output matches the expected output after

executing a software system and ensuring the system is defect free (S. Karuturi and G.

Malle, 2017). Software testing is significant in a project to identify bugs or errors in the

system. Once an error determined is fixed, the system needs to be tested again to confirm

the fix. Half of the development cost will be required to cover the software testing process,

which identifies it as the phase which cost the most amount in a software development

(Kit. E and Susannah. F, 1995). While large sums of money are invested in software

testing, if the process is done correctly, the effectiveness may not be as much as one would

consider, mostly 20 percent (Huang. L and Boehm. B, 2006).

Traditional testing has been a standard method in performing software testing. The testing

is done in a set of phases where completion of one phase is required to proceed to the next

phase. Whereas in agile testing, the process follows an iterative approach and an adaption

model. Table 2.2 states how these two differ.

Table 2. 3 Difference between Traditional and Agile Software Testing

Traditional Testing Agile Testing

Testing is executed in phases using

a top-down approach

Testing is executed in an iterative

approach and an adaptive model

Testing is done only after the

development process is completed

Testing is done on-the-go where the

defects are fixed at each sprint

The requirements stated are

finalized and not easily changed

The requirements are fixed but flexible to

adapt to changing business and user

requirements

Changes and modifications are

usually implemented on the next

release

Changes and modifications can be

implemented on the next sprint

Feedbacks are taken from the end

users once the product is completed

Feedbacks are taken from time to time

when process is ongoing to ensure client

satisfaction

Time consuming as one whole phase

is dedicated for testing

Prevents spending excessive time as

testing is done at each sprint

12

Both testing approach can be effective and efficient in their own way. Comparing the

approaches might make it seem that one has an advantage on the other, both will ensure

results. The choice of implementation solely depends on the requirements of the project

as well as the client.

However, the focus will be on agile environment for this paper. The testing process in an

agile environment has been gathering attention as agile practices depend on accurate

software testing since the very beginning (Glenn V, 2005). Agile operates on incremental

method. In this case, testing has to be executed on at each stage during development

(Rijwan K, Akhilesh K and Dilkeshwar P, 2016). Due to the fact that agile processes are

iterative, test activities are required to be executed quick and efficient following the

iterations (Collins E and Lucena V, 2010). Agile testing means testing an application with

the mindset of understanding it and allowing customers to be involved in guiding the

testing in line with agile principles (Crispin L and Gregory J, 2009). According to these

authors, these are the important aspects required to perform agile testing successfully as

shown in Figure 2.2.

13

Figure 2. 2 Key Factors to Perform Agile Software Testing

Customers involvement is the focal part of ASD. But generally, they might lack

knowledge on the technical aspect of the NFR and concentrate more towards the business

side of the system (R. Cristina, M. Sabrina and S. Daniela, 2016). Based on Crispin and

Gregory, business partners trust that the development team should handle the NFR aspects

such as performance and security of the system. Figure 2.3 presents the various types of

agile testing viewed from different angles (Crispin L and Gregory J, 2009).

14

Figure 2. 3 Agile Testing Quadrants (Crispin L and Gregory J, 2009)

The first and second Quadrant tests lean towards specifying the requirements and the

designing process. Quadrant one’s tests which consists of unit and component tests are

executed in a regular basis to ensure the quality of codes. Tests in Quadrant 2 involves

requirements design. Examples, simulations, story tests and prototypes are executed to

verify whether the purpose of the application was as desired. Whereas the functional tests

ensure the codes functions as required.

Tests conducted in the third and fourth Quadrant judges the application in a different point

of view. Testing in the third Quadrant involves business scenarios. It is conducted to check

if the functionality of the application meets the required business demand. The tests in

Quadrant 4 are more technical related which requires accurate analysis of results and

usage of technical tools to assist in the process. These tests in Quadrant 4 requires

specialized knowledge to be conducted correctly.

Although there are many types of software testing, this paper will only focus on the testing

of NFR.

15

2.4 Non-Functional Requirement

Requirements engineering (RE) is a process of identifying what is required by a system,

followed by documentation of the process and maintaining those gathered requirements

(Raimundas, 2005) (Pamela, 1997) in a software engineering design process. System

requirements describes the features and behavior of a software application. Traditionally,

the procedures of RE is a set of sequential activity. The initial stage of the process is

requirements elicitation, where details on the requirements are gathered. After the

information is gathered, the requirements analysis can begin, where an understanding is

created on the requirements. The following stage is requirements specification, and this is

the phase that the requirements are being executed into the system. And requirements

validation detects and fixes errors if found (Ville T, Casper L, Daniela D and Maria P,

2015). Requirements management produces bassline requirements and monitoring them.

This process involves participation from the stakeholders (Bahiya M and Abdelhamid M,

2015). Requirements development process are summarized as:

• Requirements Elicitation occurs in the initial stage. This stage consists gaining

knowledge of what is needed and identifying the requirements. And the

information gathered needs to be provided to the development team (Westfall L,

2005) (Sean I, 2001).

• Requirements Analysis happens directly after the previous stage. This stage

involves “cleaning up” the gathered requirements. This is to ensure that they are

consistent, complete and viable (Karl W, 2003).

• Requirements Specification is the third stage in the requirements development

process. This is the process where all the refined requirements are formally

documented (Westfall L, 2005).

• Requirements Validation usually is performed at the end of the requirements

development process. It is done to confirm the requirements are consistent,

adequate, adjustable, unambiguous, concise, quantifiable, testable and traceable

(Westfall L, 2005).

16

• Requirements Management is the stage consists of activities involving conducting

analysis on the change requested to assess their impact. Based on the completed

analysis, the implementation of the changes will be decided, either to approve or

disapprove (Westfall L, 2005).

However, in ASD, RE process can be challenging because performing RE takes time

which could be spent writing codes (Kassab M, 2014). Authors such as (Glinz, 2005) and

(Mabrok et al, 2015) categorize them into:

1. Functional requirements (FRs) whereby the purpose of the system is defined

(Faisandier, 2012). Functional testing’s checks whether the software’s required

behavior matches the specifications set.

2. NFR (NFRs) where the performance characteristics of the system is judged. This

is important because it determines how the system performs and describes the

aspects that affects how well can the system function (Mabrok et al., 2015).

Table 2.3 below lists down the difference between the two types of testing.

Table 2. 4 Difference between Functional Testing and Non-Functional Testing

 Functional Testing Non-Functional Testing

Execution

Period

Functional testing is executed before

non-functional testing

Non-functional testing is executed after

functional testing

Focus Area Based on customer’s requirements Focuses on customer’s expectation

Requirements Easy to define requirements. Carried

out using the functional

specifications

Difficult to define requirements. Carried

out using the performance specifications

Goal To validate the system behaviour

against the specification

To validate the performance and technical

aspect of the system

Functionality Describes what the system does Describes how the system works

Test Example Check the login functionality The login page should load in 2 seconds

Testing Types • Unit testing

• User Acceptance

• Integration Testing

• Regression testing

• White Box Testing

• Black Box Testing

• Interoperability

• Performance Testing

• Security Testing

• Scalability Testing

• Usability Testing

• Portability Testing

• Reliability Testing

• Compliance Testing

17

Defined by IEEE, NFR is “a software requirement that describes not what the software

will do, but how the software will do it”. Stakeholders actually care about NFRs, because

it decides the quality characteristics of the system (Kiran K and Arvind K, 2013). These

authors emphasize that NFR plays a big part in RE. It may be the deciding factor of a

systems success or disaster. There’s a number of definitions of NFR provided by various

researchers, Glinz has provided a survey of all the definition of NFR in the last 20 years.

Table 2.4 contains the definitions of NFR from different authors (Glinz M, 2007).

Table 2. 5 Definitions of NFR from Various Authors

Author Definition

(Anton A, 1997) Concentrates on the non-behavioural characteristics of the system, gathering the

properties and limitations on which a system must function.

 (Davis A, 1993) The overall characteristics of the system containing portability, reliability,

efficiency, human engineering, testability, understandability, and modifiability.

(Jacobson I,

Booch G and

Rumbaugh J,

1999)

Extracts the physical constraints on a functional requirement. Specifies the

system attributes such as environmental and implementation constraints,

performance, platform dependencies, maintainability, extensibility, and

reliability.

(Kotonya G and

Sommerville I,

1998)

Categorized as the requirements that does not concern the functionality of the

system. The external constraints that the product needs to meet that is extracted

from restrictions on the system being developed and the development process.

(Mylopoulos J,

Chung L and

Nixon B, 1992)

Focus on how the system should do by gathering requirements such as

performance, reliability, maintainability, portability, robustness. There is no

complete list of non-functional requirements.

(Ncube C, 2000) The behavioral attributes that the functions must follow such as performance,

usability, etc.

(Robertson J and

Robertson S,

1999)

A quality that a product must possess such as speed, appearance or accuracy.

(Wiegers K,

2003)

Attributes that a system has to represent or a rule it has to obey, not necessarily

an observable behaviour.

Proper NFRs testing can produce a quality product. Vikas and Ravi lists the common

NFRs that developers come across when handling a software system:

• Performance is where the processing time of the system is judged. For example,

the time needed for a system or page to load, refresh, etc. This is the most common

NFR for software developers as the system performance is vital.

18

• Reliability is the system’s ability to recover when a failure occurs. For example,

what can be the maximum downtime?

• Availability is the systems operational time. For example, specific times of the day

when the system is available.

• Compatibility covers the ability of the system to operate seamlessly on different

platforms, either hardware and software or even both. For example, can the system

operate on shared applications? Can the system operate on 3rd party applications?

• Usability is the measures how hard is it to use the system. For example, the ease

of use, how many languages it supports, are the colors confusing, etc.

• Maintainability shows how easy can the system be modified or undergo some

changes. This involves adding or removing functionalities or even bug fixing.

• Interoperability is the ability to work with other systems with no limitations and

difficulty in the access aspect.

• Recovery shows how the system gets back up and function as per normal when

there’s an issue or when it encounters damage. For example, how long does it take

for the system to get up and functioning at its original state.

• Robustness shows the toughness and how the system handles issues that come up

during execution. For instance, can the system still operate if wrong inputs were

inserted?

• Resilience is the ability of the system to maintain its standard to function normally

even if errors are encountered.

Author Mairiza conducted an analysis on numerous types of systems and applications

based on three scopes of NFRs. The first scope is the definition and terminology. The

second scope is followed by the types. Finally, the third scope covers the relevant NFRs.

Table 2.5 provides the findings from the analysis (Mairiza D, 2010).

19

Table 2. 6 Relevant NFRs on Different Application Domains

Application Domain Relevant NFRs

Banking and Finance Accuracy; Confidentiality; Performance, Security; Usability

Education Interoperability; Performance; Reliability; Scalability; Security;

Usability

Energy Resources Availability; Performance; Reliability; Safety; Usability

Government and Military Accuracy; Confidentiality; Performance; Privacy; Provability;

Reusability; Security; Standardizability; Usability; Verifiability;

Viability

Insurance Accuracy; Confidentiality; Integrity; Interoperability; Security;

Usability

Medical/ Health Care Communicativeness; Confidentiality; Integrity; Performance;

Privacy; Reliability; Safety; Security; Traceability; Usability

Telecommunication

Services

Compatibility; Conformance; Dependability; Installability;

Maintainability; Performance; Portability; Reliability; Usability

Transportation Accuracy; Availability; Compatibility; Completeness;

Confidentiality; Dependability; Integrity, Performance; Safety;

Security; Verifiability

Although there are many types of NFR, this paper will only focus specifically on the

performance and security aspect in agile development.

Performance testing is performed to validate a system’s technical attributes. These

attributes consist of the system’s speed, stability or scalability (Meier J, Farre C, Bansode

P, Barber S and Rea D, 2007). The system is tested using parameters such as access time,

execution time, load time, run time, the degree of success, the degree of failure,

downtimes, the system’s reliability as a whole, etc. (Itti H and Rajender S, 2015). Mainly,

performance tests are conducted to ensure the system adheres to the performance

objectives set. Cristina Sabrina and Daniela lists the three types of testing approaches in

order to achieve a set of goals (R. Cristina, M. Sabrina and S. Daniela, 2016):

• Performance Test is performed to examine the system’s responsiveness, stability,

scalability, reliability or speed. Prior to the testing, the system should have

business goals set to check if the set goals are achieved.

• Load Test checks how the system functions when exposed to different load

conditions. Analyzes the system’s ability to handle heavy load volumes.

20

• Stress Test pushes the limit of the system by placing it under huge load conditions

to test the endurance. It also checks how will the system recover from an event of

a failure.

Security testing is considered to be a critical to a system as it checks how secure is the

system and reduces vulnerabilities of being attacked (Warren C, 2011). The security

vulnerabilities include data protection, integrity, authorization, confidentiality,

availability and authentication issues (Crispin L and Gregory J, 2014). The priority for

security testing may vary across different domains. For example, it will be key for

companies that are in the finance domain such as banks etc. Attackers are ever ready to

pounce on a vulnerability; vulnerability is considered as an error in the system (Verndon

D and McGraw G, 2004). Depending on system, there are several types of security testing

that can be used such as: Vulnerability Assessment and Penetration Test. Vulnerability

Assessment is conducted to identify security weaknesses or flaws of the system that will

be able to provide access to attackers. This method is list-orientated meaning the testing

is done in categories based on their importance. On the other hand, penetration testing is

done after vulnerability assessment. This activity is conducted to simulate a real attack

scenario to test the robustness of the system. By doing so, security loopholes can be

determined without inflicting any damage to the system. Testers are provided the authority

to attempt to defeat the system and find faults, this is all done in with authorization (Jai N

and Mehtre B, 2015).

2.5 Factors influencing the testing of NFR

In this section, we review the factors influencing the testing of NFR from findings of

different authors.

In the year 2012, authors Vikas Bajpai and Ravi Prakash Gorthi mentioned that there has

been a hike in research made on the field of NFR, however there are still issues when it

comes to measuring or specifying these requirements. During the software development

process, NFR are rarely considered to begin with. The factors for neglecting NFR are:

21

• Priority. Functional requirements are considered sufficient while NFR are ignored.

• Lack of tools. Limited techniques and tools available to help determining the

requirements.

• Awareness. The lack of understanding and knowledge on how non-functional

testing can make a significant impact or improvement on a system.

• Culture. Ideology of considering non-functional testing as a crucial aspect of a

software development process.

Standish Group (2014) published a study focusing on factors causing software project

failures. A total of 8 factors were identified and 5 were related to RE. The 5 factors are

lack of participation from customers, incomplete requirements, constant amendments to

the requirements, unrealistic expectations and also numerous not needed requirements

identified.

• Low customer involvement. Developers mindset may differ to customer mindset

which can cause incorrect prioritization of requirements.

• Incomplete requirements. The process of requirement analysis not conducted in

detail.

• Changes in requirements. As the project develops, new requirements can emerge

causing unexpected changes in the whole project.

• Unrealistic expectations. Lack of communication may lead to one end being

dissatisfied with the system as requirements may differ.

• Unnecessary requirements identified. Some requirements are more critical

compared to another which is why prioritization of requirement is key.

Authors Bahiya M. Aljallabi and Abdelhamid Mansours (2015) state that although agile

methodology plays an important part in improving the software development process,

there’s numerous limitations as soon as it boils down to requirement analysis. NFR is

often neglected during the requirement analysis process. The factors for neglecting NFR

22

are minimal documentation, lack of communication with customer, project budget and

limited time.

• Minimal documentation. There are no templates or past documentation to assist in

new projects.

• Communication with customer. Incorrect prioritization of requirements can lead to

a lot of rework if communication with customers is unclear.

• Budget/Cost. Budget estimation is never fixed as requirements change.

• Time. Lack of time is usually an issue in an agile development process. No proper

time is allocation for non-functional testing.

In the year 2015, Ville T. Heikkil¨a, Casper Lassenius, Daniela Damian and Maria

Paasivaara collected information from articles reporting problems related to agile RE

approach. The issues were organized into 6 themes: no proper communication between

clients or customers, the uncertainty in user story format, requirements prioritization not

figured out thoroughly, an increase in technical cost, high knowledge dependence on

implicit requirements and inaccurate evaluation on energy aspect.

• Communication issues with clients. Lack of communication with customer or

customer representative leads to incorrect prioritization of requirements. This is

because developers might not understand how the business aspect works and make

wrong decisions.

• User story format unclear. User stories often lack clear explanation on the design

process of the software and requirements may need to be divided accordingly.

NFRs are often ignored.

• Issues in prioritizing requirements. There are several reason why prioritizing

requirements is not an easy task in agile development.

o Agile development method does not have a phase to analyse requirements

causes lack of proper requirements

o Requirement prioritization is usually related to business value which will

hide the system improvement related requirements

o Conflicting requirement needs between customers

23

o Unrealistic customer expectations

o Clients unable to decide on requirement prioritization

• Increasing technical debt. The system architecture might be compromised due to

the short period of time provided. A complete re-write of the system architecture

might be required.

• Reliance on tacit requirements knowledge. Determining requirements requires a

set of skill, experience and understanding on the importance of requirements

analysis.

• Cost. Due to the fact that requirements were not properly listed, the project may

encounter various unexpected issues with the system. This will add to the project’s

expenses.

• Time. Due to the fact that requirements were not properly listed, the project may

encounter various unexpected issues with the system. This will lengthen the

project’s completion date.

The study also includes findings of solutions to several issues above. Table 2.6 lists the

solutions.

Table 2. 7 Solutions established to handle the issues

Issues Solutions

• Communication - Traditional requirements engineering role

- Clear requirements elicitation

- Additional requirements documentation

- Extending automated testing ideas to requirements

validation

• User story

format unclear

- More details to be included in user story format

- Limiting the use of user story format for requirements

elicitation

• Reliance on tacit

requirements

knowledge

- Additional requirements documentation to help the

process and other members

24

In recent times, Cristina, Sabrina and Daniela (2016) conducted interviews on agile team

members to determine the influencing factors of conducting testing of NFR. Based on the

results obtained, they were able to organize the data into the following factors:

• Priority. To find out how will the system benefit from performing non-functional

testing. It was identified as the main factor. However, the priority depends on

different aspects such as:

o System Characteristic. This includes 1) the type of system; 2) user

experience on the system; and 3) trend analysis of the system.

o Project Type. This means whether it a new development of a system or

changing/fixing an existing system.

o Criticality to Business. This is based on client or the business expectations

and the impact to the system if non-functional testing is conducted

• Time Pressure. Time is always a factor in an agile environment. Functional testing

always come first compared to performance testing due to time constraints.

However, it was found that time is always provided for security testing due to its

criticality to a system.

• Cost. It is discovered that the cost factor has two different views. 1) The cost of

failure; this is the additional cost if the system fails the non-functional testing. 2)

Budget; where the clients decide not to allocate a budget for the testing because

they lack the knowledge in knowing how can the testing benefit the system.

• Technical Issues. This is when the issue lies on the system codes. In this case, there

are 3 categories.

o Production Incidents. If there’s a real issue during the production, only

then non-functional testing will be considered.

o Resource Utilization. Analyzing and conducting an assessment on the

performance of the system, then decide if the testing for NFRs is needed.

o Environment. Performing tests in an inappropriate environment size that

does not provide accurate results

• Awareness. The lack of knowledge on how non-functional testing and benefit a

system significantly. They believe that if the system does what it is supposed to

do, then the system is fine.

25

• Culture. Businesses and developers need to create the habit of considering non-

functional testing for a system. Agile developers specifically should always take

both FR and NFR testing into consideration in the development stage.

• Experience. Due to bad past experiences, the senior members in the team are

usually conscious in need of non-functional testing. However, the younger team

members usually tend to tie down their focus on the system’s functional aspects.

Other than that, the testing of NFR requires a set of skill or expertise to ensure

proper testing is conducted.

Table 2.7 shows the four practices created for the team members to tackle the above

factors influencing non-functional testing.

Table 2. 8 Practices established to handle the factors

Factor Practices

• Priority - Discuss in detail on non-functional aspects

- User story to be developed

- Senior team members to emphasize the importance of

non-functional testing

• Awareness

• Culture

- Non-functional requirements and testing need to be

reviewed by at least one member from different roles

(developers, testers, software architects and product

owners)

• Priority

• Culture

• Cost

• Technical Issues

• Awareness

• Time Pressure

- Communication between developers and testers are to

be done clearly

- Communication with other teams and real users

should be practiced as well to have different views

• Priority

• Awareness

• Culture

- Quality mindset is required throughout the whole

process

- Understanding of the importance of non-functional

testing is required

26

2.6 Summary of factors influencing the testing of NFR

After reviewing the factors influencing the testing of NFR by various authors, the

summary of the findings is tabulated in Table 2.8. Paper 1 & 2 does not limit to only ASD.

Paper 2 & 3 consist of share factors that affect the RE process in general. As the table

shows, there are a number of repeating factors among different studies.

27

Table 2. 9 Summary of the factors influencing NFR testing

Paper 1 2 3 4 5

Author

Vikas Bajpai

and Ravi

Prakash Gorthi

(2012)

Standish Group

(2014)

Bahiya M.

Aljallabi and

Abdelhamid

Mansours

(2015)

Ville T.

Heikkil¨a,

Casper

Lassenius,

Daniela

Damian and

Maria

Paasivaara

(2015)

Cristina,

Sabrina and

Daniela (2016)

Methodology General General

Agile Agile Agile

Non-

functional

requirement

(NFR) /

Functional

requirement

(FR)

NFR NFR , FR NFR NFR , FR NFR

Factors • Prioritization

of

requirements

• Lack of tools

to define

requirements

• Awareness

• Culture

• Lack of

communicatio

n with

customer

• Prioritization

of

requirements

• Cost/Budget

• Lack of

communicati

on with

customer

• Minimal

documentatio

n

• Time

pressure

• Cost/Budget

• Lack of

communicati

on with

customer

• User story

format

unclear

• Prioritization

of

requirements

• Reliance on

tacit

requirements

knowledge

• Time

pressure

• Cost/Budget

• Prioritization

of

requirements

• Time pressure

• Cost/Budget

• Technical

issues

• Awareness

• Culture

• Experience

28

2.7 Summary

This chapter covered the previous studies on the definitions, ASD process, a comparison

summary of the traditional methodology against agile methodology, the agile software

testing process, the difference between the two, a detailed review on NFR and the existing

studies on the factors influencing NFR testing. Furthermore, we have included a

summarize table for the factors influencing NFR testing identified by previous studies.

29

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter describes the methodology implemented. The purpose of this study is to

determine the influencing factors of conducting non-functional testing in ASD. We

highlight the design of the research steps utilized to achieve our objective.

3.2 Research Design

This design of this research is constructed based on two context which are analytical

review and quantitative survey. The first approach is constructed based on the three goals

identified for this research, which are: (1) To identify the influencing factors of testing of

NFR in ASD, (2) To discover the challenges faced to conduct the testing of NFR in ASD

and (3) To determine the practices that can be adopted by agile team member when

conducting non-functional testing. We reviewed the literature focusing on NFR testing

and extracted the relevant influencing factors of conducting the testing of NFR in agile

environment and a few non-agile environment software development processes mentioned

in the analyzed papers in Chapter 2.

In addition to that, a quantitative survey was deployed as the second approach to

empirically evaluate to identify the influencing factors of conducting NFR testing in ASD

environment, to discover the challenges that the agile team members run into when

conducting the testing and to determine the guidelines adopted by agile team members to

get passed the obstacles when conducting non-functional testing. By using Cristina,

30

Sabrina and Daniela’s (2016) interview guide as a bassline, a set of questions was built to

collect the relevant information to fulfill the research’s objectives. Other than that, to

validate the survey and ensure the collected data is what we require to achieve the

objectives, an expert review was performed.

The Figure below shows the planned research approach.

Figure 3. 1 Research Approach

31

3.3 Expert Review

Reliability of a study is important as well as the validity but those will only come when

information is accurate, trustworthy and credible (Davies & Dood, 2002). An expert

review was conducted because we strive to have clear statements in the set of questions

and most importantly the participants understands the questions how we want them to. A

total of four experts were brought in to perform the review and the data collected from

those four experts was left out and not taken into the total count of the sample of the study.

Two of them were from educational background whereas the other two were from private

sectors. The two experts from the educational background consisted of one male and one

female, both associate professors in their late-30’s. The remaining two experts from the

private sector were both male; software testers in their mid-30’s. We looked into their

feedback on the statements prepared. Suggestions were taken and used to better the

questionnaire but no major changes were required.

3.4 Data Collection

We were collecting the data between the month of July and August 2019. Google Forms

is where the survey was created and the data were primarily gathered from the online

source. Printed versions of the survey were distributed as well. The survey incorporated a

small write up about non-functional testing in ASD.

For this study, we chose questionnaire as the data collection method. It’s a set of questions

or statements prepared to get hold of information or data from participants; whereby

questions are usually close-ended (Kothari, 2004). Questionnaires don’t cost much for the

ability to gather large amount of sample in a desired group of people (Akbayrak, 2000).

Instead of interviews, we chose to do a set of statements built by ourselves to ensure we

32

get the data required whereas interview can go off course and lead to collection of

unnecessary or excessive data due to interviewer’s skills (Phellas, Bloch & Seale, 2011).

Overall, we had 139 participants from diverse backgrounds. However, only 128 responses

were extracted and found useful. The Google Form survey link that was used to collect

the responses is stated below:

http://bit.ly/ashwinesh

3.4.1 Survey Sample

The size of the sample used was determined based on the need to gather sufficient

statistical power. We had a timeframe set for data collection and all the valid responses

received were used as results. A combined total of 139 responses for the questionnaires

was collected from online and physical surveys but only 128 responses were extracted as

useable results whereas the remaining responses were discarded due to invalid responses.

3.4.2 Research Instrument

This research had two ways of completing the survey which is an online copy or a physical

copy of it (found in Appendix A) which aided as an instrument to gather information from

the respective participants. The structure of the survey is as follows:

a) Demographic Information

This is the first section of the survey which consists of eight questions which is regarding

the respondent’s background.

b) Perception on Non-Functional Testing in Agile Software Development

31 statements that are relevant to NFR testing in ASD, the factors influencing non-

functional testing, what are the challenges faced when conducting non-functional testing

http://bit.ly/ashwinesh

33

and the practices used to overcome obstacles when conducting non-functional testing that

were identified from the existing guidelines are found in this section.

3.5 Quantitative Approach

Quantitative research approach involving calculation or measurement to be able to use the

information statistically (Leedy, 1993). The main goal of this method is to gather

measurable data from respondent’s perspective on understanding of subject, issues and

views of the topic. A quantitative researcher will always gather and validate the data

obtained very carefully; commonly in a form or integers to be able to translate the to be

able to view it statistically in a computer (Neuman, 2006). Quantitative research allowed

us to quantify the gathered information by generating numerical data that transformed into

useable statistics for our study.

3.5.1 Questionnaire Development

Part (1) Demographic Information consists of eight questions to get an idea of the

participants background. Part (2) consists of 31 statements that are related to NFR testing

in ASD environment, the factors influencing non-functional testing, what are the

challenges faced when conducting non-functional testing and the practices used to

overcome obstacles when conducting non-functional testing which were identified from

the existing guidelines. Expert review was conducted to validate the questions and

statements.

34

3.6 Data Analysis

We opted to use SPSS version 26 as our data analysis tool for this research. Descriptive

analysis was conducted to identify the demographic information of the respondents.

Cronbach’s Alpha reliability test was also conducted to measure the reliability of the

statements presented in the questionnaire. Furthermore, Kaiser-Meyer-Olkin (KMO) test

was used to measure if the data is suitable for Factor Analysis. Bartlett’s Test was

performed to compare the correlation matrix to the identity matrix; this checks for

redundancy between variable that can be included together with certain factors. Last but

not least, Exploratory Factor Analysis (EFA) was performed to find how the variable’s

measured relate to one another.

3.7 Summary

We illustrated the methodology implemented and explained why the method was chosen

to be used in this research. We also explained the design structure of the research and the

steps taken to conduct it. Two prominent approaches were used in this study; the first is

analytical review of the existing factors and secondly, quantitative survey. The data

collection method, research instrument and details of the data analysis were also

highlighted in this chapter.

35

CHAPTER 4

RESULTS AND ANALYSIS

4.1 Introduction

This chapter highlights the results of a quantitative survey that was conducted to identify

the factors affecting the non-functional testing in agile software environment. The data

obtained from the 128 participants were analyzed using various statistical tests. The

detailed report of the results is elaborated.

4.2 Descriptive Information of Respondents

The sample consisted of 128 participants from various backgrounds living in Malaysia

(Mean Age= 32, Standard Deviation = 6.71). The following section presents the

demographic information obtained from the survey.

36

4.2.1 Gender

Figure 4.1 shows the graphical representation of the respondents’ gender. Based on the

data, we obtained a good balance of the distribution between male and female

respondents in this study, even though there were slightly more males (55.47%)

compared to females (44.53%) in the sample.

Figure 4. 1 Gender

37

4.2.2 Education Background

Figure 4.2 presents the graphical representation of the respondents’ educational

background. The majority of the respondents (96.88%) were clearly from the tertiary

level completion category, which is 124 of them from the total respondents. The

remaining were divided between secondary and primary level with 2.34% and 0.78%

respectively.

Figure 4. 2 Education Background

38

4.2.3 Knowledge on Agile Software Development

The respondent’s knowledge on ASD is presented in Figure 4.3. presents the graphical

representation of the respondents’ educational background. The chart displays a wide

number of the respondents (76.56%) had prior knowledge on ASD. It was gathered that

23.44% of the respondents had no knowledge on ASD.

Figure 4. 3 Knowledge on ASD

39

4.2.4 Involvement in Software Development Process

In Figure 4.4 we are able to see that a total of 78 respondents out of 128 (60.94%) have

an exposure in the field of software development process whereby the remaining

percentage of 39.06 have no particular involvement in the process.

Figure 4. 4 Involvement in Software Development Process

40

4.2.5 Knowledge on Software Testing

In Figure 4.5, we present the graphical representation of the participants’ knowledge on

software testing. Most of the participants (78.91%) have heard about software testing

process. Only a small portion (21.09%) have no knowledge on software testing.

Figure 4. 5 Knowledge on Software Testing

41

4.2.6 Involvement in Testing of Non-Functional Requirements

In Figure 4.6, the graphical representation of the respondents’ involvement in testing

NFR is shown. The chart shows an almost even split of respondents. A percentage of

53.91 respondents have been involved in NFR testing. However, the remaining

respondents (46.09%) have not been involved in the process of testing NFR.

Figure 4. 6 Involvement in Testing NFR

42

4.2.7 Work Experience

Figure 4.7 provides an idea of the amount of work experience a participant have in a

software development environment. It is found that a chunk of the respondents (39.06%)

belong to the category without any work experience in the software development area.

The rest of the respondents have acquired at least a minimum amount of work

experience in software development field. Majority of them (28.90%) were from the

category of less than 5 years of experience. Next were the category between 5 to 10

years with 15.62% of the overall. The remaining were split between the categories 11 to

15 years and more than 15 years with 12.50% and 3.91% respectively. Only a handful of

respondents had the experience of more than 15 years in this field.

Figure 4. 7 Work Experience

43

4.2.8 Summary of the Respondents’ Demographic Information

Table 4.1 provides a summary of the participants’ demographic information presented

above.

Table 4. 1 Descriptive Information of Respondents’

Characteristics n %

Gender

Male 71 55.47

Female 57 44.53

Highest Level of Education

Tertiary 124 96.88

Secondary 3 2.34

Primary 1 0.78

Heard about agile software development

Yes 98 76.56

No 30 23.44

Been directly involved in software development process

Yes 78 60.94

No 50 39.06

Heard about software testing

Yes 101 78.91

No 27 21.09

Been involved in testing non-functional requirements

Yes 69 53.91

No 59 46.09

Work Experience (Involvement in Software Development)

Less than 5 years 37 28.90

5 to 10 years 20 15.62

11 to 15 years 16 12.50

More than 15 years 5 3.91

None 50 39.06

44

4.3 Descriptive Statistics Representation

We present the individual variable’s descriptive statistics in detail in this section. The

mean score statistic interpretation was conducted based on Table 4.2 which was adopted

from Siron, Tasripan & Majid (2013).

Table 4. 2 Mean Score interpretation

Mean Score Interpretation

1.00 – 1.80 Strongly Disagree (SD)

1.81 – 2.60 Disagree (D)

2.61 – 3.40 Moderate Agree (MA)

3.41 – 4.20 Agree (A)

4.21 – 5.00 Strongly Agree (SA)

Table 4.3 illustrates the mean score value of ASD Methodology. As shown in the table,

the participants strongly agreed on one item whereas the other two items scored agree.

The overall mean score value of ASD Methodology is 4.26 (Agree).

Table 4. 3 Mean Score for ASD Methodology

Items Mean Std. Deviation Status

I understand there are various types of software

development methodologies available.

4.22 0.639 SA

In software development process, agile

methodology is widely used in projects.

4.20 0.732 A

I prefer agile methodology compared to the

traditional methodology.

4.15 0.620 A

Overall mean score value of Agile Software Development Methodology 4.19

Overall mean status of Agile Software Development Methodology A

45

Table 4.4 illustrates the mean score value of Software Testing (Non-Functional Testing).

The participants strongly agreed on four out of the five items whereby the remaining one

item scored agree. The overall mean score is 4.25 (Strongly Agree).

Table 4. 4 Mean Score for Software Testing (Non-Functional Testing)

Items Mean Std. Deviation Status

It is important to conduct software testing on every

project.

4.31 0.599 SA

Non-functional testing is more important than

Functional testing.

4.18 0.539 A

Non-functional testing is not taken seriously by

testers.

4.26 0.578 SA

Non-functional testing is required in all projects. 4.21 0.556 SA

If provided a choice, I would choose to conduct

non-functional testing in all projects.

4.27 0.582 SA

Overall mean score value of Software Testing (Non-Functional Testing) 4.25

Overall mean status of Software Testing (Non-Functional Testing) SA

46

Table 4.5 illustrates the mean score value of Non-Functional Testing Process. The

respondents strongly agreed on three out of the four items whereby the remaining one item

scored agree. The overall mean score value is 4.23 (Strongly Agree).

Table 4. 5 Mean Score for Non-Functional Testing Process

Items Mean Std. Deviation Status

Non-functional testing process is started when the

project begins.

4.20 0.562 A

Non-functional testing process should start as soon

as a project begins.

4.24 0.572 SA

Non-functional testing is done by anyone in the

team.

4.22 0.560 SA

Non-functional testing should only be done by a

specialist.

4.27 0.585 SA

Overall mean score value of Non-Functional Testing Process 4.23

Overall mean status of Non-Functional Testing Process SA

47

Table 4.6 illustrates the mean score value of Factors influencing Non-Functional Testing.

The respondents strongly agreed on ten out of the thirteen items presented whereby the

remaining three items scored agree. The overall mean score value is 4.24 (Strongly

Agree).

Table 4. 6 Mean Score for Factors influencing Non-Functional Testing

Items Mean Std. Deviation Status

Time constraint. 4.28 0.574 SA

Budget constraint. 4.27 0.585 SA

Failing to prioritize in the initial stage. 4.21 0.527 SA

Technical issues. 4.20 0.548 A

Awareness of the importance. 4.24 0.529 SA

Culture of the company. 4.23 0.550 SA

Experience of the members. 4.24 0.572 SA

Lack of communication with customer. 4.19 0.572 A

Minimal documentation of the process. 4.23 0.564 SA

Incorrect individual performing the tests. 4.35 0.875 SA

Over-reliance on manual testing. 4.15 0.875 A

Lack of training invested for team members. 4.25 0.851 SA

Lack of team effort. 4.25 0.910 SA

Overall mean score value of Factors influencing Non-Functional Testing 4.24

Overall mean status of Factors influencing Non-Functional Testing SA

48

Table 4.7 illustrates the mean score value of Challenges Faced When Conducting Non-

Functional Testing. The participants strongly agreed on five out of the total nine items

where the remaining four items scored agree. The overall mean score value is 4.21

(Strongly Agree).

Table 4. 7 Mean Score for Challenges Faced When Conducting Non-Functional Testing

Items Mean Std. Deviation Status

I face various challenges in conducting non-

functional testing.

4.23 0.564 SA

I am able to overcome the challenges faced. 4.18 0.633 A

Challenges faced in every project are similar. 4.27 0.582 SA

Programmers Writes Tests. 4.19 0.572 A

Lack of documentation throughout the process. 4.25 0.544 SA

Lack of testing skillset between team members to

conduct proper testing.

4.21 0.449 SA

Lack of individuals assigned to conduct the testing. 4.19 0.569 A

Requirements are too subjective. 4.22 0.648 SA

Infrastructure overhead. 4.18 0.659 A

Overall mean score value of Challenges Faced When Conducting Non-

Functional Testing

4.21

Overall mean status of Challenges Faced When Conducting Non-Functional

Testing

SA

49

Table 4.8 illustrates the mean score value of Practices to Adopt for Conducting Better

Non-Functional Testing. The participants strongly agreed on six out of the seven items

whereby the remaining final item scored agree. The overall mean score value is 4.23

(Strongly Agree).

Table 4. 8 Mean Score for Practices to Adopt for Conducting Better Non-Functional

Testing

Items Mean Std. Deviation Status

Non-functional testing requires clear requirements

elicitation.

4.26 0.565 SA

Non-functional testing requires additional

requirements documentation to help the process and

other members.

4.21 0.570 SA

Non-functional requirements and testing need to be

reviewed by at least one member from different

roles (developers, testers, software architects and

product owners).

4.23 0.568 SA

Understanding of the importance of non-functional

testing is required.

4.25 0.517 SA

Test planning should be done in the early stage of

development.

4.24 0.625 SA

Understanding the proper usage of testing tools to

assist with the testing process.

4.21 0.605 SA

Repeat tests multiple times to ensure consistent

results.

4.18 0.590 A

Overall mean score value of Practices to Adopt for Conducting Better Non-

Functional Testing

4.23

Overall mean status of Practices to Adopt for Conducting Better Non-

Functional Testing

SA

In summary, out of the six variables sectioned, five of them produced an overall mean of

at least 4.21 and above which resulted in a Strongly Agree status while the first variable,

ASD Methodology, obtained an overall mean of 4.19 which resulted in an Agree status.

50

4.4 Reliability Analysis

To conduct the reliability analysis for this study, Cronbach’s Alpha test is conducted using

IBM SPSS Statistic tool. Cronbach’s Alpha is used measure the reliability or internal

consistency of a scale, usually when questionnaires contain Likert scales are present

(Tavakol & Dennick, 2011). Therefore, to confirm the validity of the questions presented

in the questionnaire, Cronbach’s Alpha test is conducted. The Table 4.9 below illustrates

the range of reliability of the Cronbach’s Alpha.

Table 4. 9 Mean Score for Reliability range of Cronbach’s Alpha

Cronbach’s Alpha Internal Consistency

0.9 ≤ α Excellent

0.8 ≤ α < 0.9 Good

0.7 ≤ α < 0.8 Acceptable

0.6 ≤ α < 0.7 Questionable

0.5 ≤ α < 0.6 Poor

α < 0.5 Unacceptable

However, a high degree of internal consistency should not be solely decided based on high

coefficient alpha. This is due to the fact that the size of the test also affects the result. A

shorter test length will reduce the value of alpha (Klein, 2008). Therefore, Table 4.10

shows the degree of alpha value when all the 41 items are combined whereas Table 4.11

displays the degree of alpha when the analysis is conducted on items per variable.

Table 4. 10 Overall Cronbach's Alpha

Cronbach's Alpha

Cronbach's Alpha Based on

Standardized Items Number of Items

.985 .984 41

51

Table 4. 11 Independent Cronbach's Alpha

Variable Number of Items Cronbach's Alpha Status

Agile Software

Development

Methodology

3 .721 Acceptable

Software Testing (Non-

Functional Testing)

5 .960 Excellent

Non-Functional Testing

Process

4 .965 Excellent

Factors influencing

Non-Functional Testing

13 .980 Excellent

Challenges Faced

When Conducting

Non-Functional Testing

9 .910 Excellent

Practices to Adopt for

Conducting Better

Non-Functional Testing

7 .952 Excellent

Table 4.10 indicates that Cronbach’s Alpha of all the items combined is .985, which is at

the ‘Excellent’ status. Table 4.11 displays the test conducted on independent variable

and the status obtain were all above the ‘Acceptable’ level at least. The results show that

the internal consistency and reliability of all the items are more than adequate.

4.5 Kaiser-Meyer-Olkin and Bartlett’s Test

Kaiser–Meyer–Olkin (KMO) Test indicates the ratio of the squared correlation between

principles to the squared partial correlation between principles. It ranges from the value

zero to one where values close to 1 are considered as high values and it indicates that the

factor analysis would produce reliable data. When the values are greater than 0.5 are

considered to be in the acceptable range (Kaiser, 1974). That being said, the values that

fall under 0.5 indicates that the data gathered requires re-work as it will not be useful.

Meanwhile, to test an original correlation matrix to the identity matrix, we conduct the

Bartlett’s Test. It basically inspects the variable to see if there are any redundancy between

52

them which can be summarized with certain number of factors. The values beneath 0.05

are highly significant.

Table 4. 12 KMO and Bartlett’s Test

Kaiser-Meyer-Olkin Measure of Sampling

Adequacy.

.904

Bartlett's Test of

Sphericity

Approx. Chi-Square 8335.023

Df 325

Sig. .000

Table 4.12 indicates that KMO value of all principles are more than acceptable. In fact it

falls in the range of superb as the results greater than .9 are taken as superb (Hutcheson &

Sofroniou, 1999). The results also indicate that the values of all items are within the

acceptable range and indicates that the factor analysis data is useful.

 4.6 Exploratory Factor Analysis

Exploratory Factor Analysis (EFA) is a statistical procedure that discovers and explains

the correlations between a large set of variables. Researchers use EFA to identify the

number of factors influencing the variables in order to analyze which variable ‘goes

together’ (DeCoster, 1998). In this study, EFA was conducted on 41 items related to six

variables. Principal component analysis with the use of promax rotation method was used

as the extraction method to ensure an understandable output. To simplify the data even

more to make it more readable, the items were assigned to shorter codes as shown in Table

4.13 below.

53

Table 4. 13 Codes and Variables Items

Variables Statements Coding

ASD Methodology I understand there are various types of software development

methodologies available.

AS1

In software development process, agile methodology is widely

used in projects.

AS2

I prefer agile methodology compared to the traditional

methodology.

AS3

Software Testing (Non-

Functional Testing)

It is important to conduct software testing on every project. ST1

Non-functional testing is more important than Functional testing. ST2

Non-functional testing is not taken seriously by testers. ST3

Non-functional testing is required in all projects. ST4

If provided a choice, I would choose to conduct non-functional

testing in all projects.

ST5

Non-Functional Testing

Process

Non-functional testing process is started when the project begins. NF1

Non-functional testing process should start as soon as a project

begins.

NF2

Non-functional testing is done by anyone in the team. NF3

Non-functional testing should only be done by a specialist. NF4

Factors influencing

Non-Functional Testing

Time constraint. FA1

Budget constraint. FA2

Failing to prioritize in the initial stage. FA3

Technical issues. FA4

Awareness of the importance. FA5

Culture of the company. FA6

Experience of the members. FA7

Lack of communication with customer. FA8

Minimal documentation of the process. FA9

Incorrect individual performing the tests. FA10

Over-reliance on manual testing. FA11

Lack of training invested for team members. FA12

Lack of team effort. FA13

Challenges faced when

conducting non-

functional testing

I face various challenges in conducting non-functional testing. CF1

I am able to overcome the challenges faced. CF2

Challenges faced in every project are similar. CF3

Programmers Writes Tests. CF4

Lack of documentation throughout the process. CF5

Lack of testing skillset between team members to conduct proper

testing.

CF6

54

Variables Statements Coding

Challenges faced when

conducting non-

functional testing

Lack of individuals assigned to conduct the testing. CF7

Requirements are too subjective. CF8

Infrastructure overhead. CF9

Non-functional testing requires clear requirements elicitation. PR1

Practices to Adopt for

Conducting Better Non-

Functional Testing

Non-functional testing requires additional requirements

documentation to help the process and other members.

PR2

NFR and testing should be checked by a person in a different

role and should not be done by the same person or a person in

the same role.

PR3

Having the knowledge of the significance of non-functional

testing is required.

PR4

Test planning should be done in the early stage of development. PR5

Understanding the proper usage of testing tools to assist with the

testing process.

PR6

Repeat tests multiple times to ensure consistent results. PR7

55

Table 4. 14 Pattern Matrix of Exploratory Factor Analysis

 Variable

Item

1 2 3 4 5 6

AS1 .851

AS2 .683

AS3 .881

ST1 .843

ST2 .890

ST3 .981

ST4 .951

ST5 .980

NF1 .915

NF2 .975

NF3 .967

NF4 .946

FA1 .838

FA2 .813

FA3 .905

FA4 .967

FA5 .638

FA6 .978

FA7 .939

FA8 .924

FA9 .990

FA10 .735

FA11 .962

FA12 .978

FA13 .966

CF1 .845

CF2 .611

CF3 .951

CF4 .746

CF5 .723

CF6 .744

CF7 .810

CF8 .951

CF9 .917

PR1 .857

PR2 .909

PR3 .895

PR4 .932

PR5 .874

PR6 .826

PR7 .906

56

Table 4.15 shows the stats which supports that all the variables remain since they keep

most of the original value. No items were removed or merged to cross relation as it is

identified they have strong relations among each other. All the loadings values are more

than 0.30 which is identified as the minimum desired value. Therefore, the pattern

matrix supports all the six variables.

4.7 Summary

Chapter 4 presents the findings of data analysis via three prominent statistical tests. To

identify the mean and standard deviation for this study, we conducted a descriptive

analysis. Other than that, we conducted a Cronbach’s Alpha reliability test to analyzed the

relations between a set of items. All the variables achieved Cronbach’s Alpha exceeding

0.6, which indicates that the internal consistency is above acceptable. KMO and Bartlett's

Test was conducted to identify the convenience in performing factor analysis. The value

0.904 obtained from KMO the test indicates that the items are closely related which means

the factor analysis should give reliable variables. As for the Bartlett’s Test, the result

obtained a value beneath 0.05 which is highly significant. Finally, EFA was carried out to

identify the underlying factors where all the six variables resulted in acceptance.

57

CHAPTER 5

DISCUSSION AND CONCLUSION

5.1 Introduction

In this chapter, we present and discuss the results obtained from the statistical tests

conducted to achieve the objectives of this study. Then, we conclude our study by

providing suggestions and recommendations for future works.

5.2 Study Overview

The objectives of this study is widen our knowledge on NFR testing on ASD, specifically:

(1) to identify the influencing factors and challenges of conducting non-functional testing

in ASD, (2) to validate the factors influencing non-functional testing in ASD and (3) to

propose the practices that can be adopted by agile team member when conducting non-

functional testing.

From previous studies mentioned in Chapter 2, we gathered the identified influencing

factors of conducting non-functional testing in ASD, challenges faced by agile team

members when conducting ASD and practices adopted by agile team member to conduct

proper NFR testing. The items collected were included in the questionnaire developed to

validate the items and respondents also included new items to further identify more

factors, challenges and practices for this study. The quantitative study involving 128

respondents was carried out to evaluate the items.

58

5.3 Discussion of Results

The main intend here is to determine the influencing factors of conducting non-functional

testing in ASD. Based on the statistical tests done, we have identified all (13) factors were

found important. A total of 4 new factors were identified in this study; Incorrect individual

performing the tests, Over-reliance on manual testing, Lack of training invested for team

members, Lack of team effort. Therefore, all the factors will be accepted and included.

The items in the first 3 variables in the results: (1) ASD Methodology, (2) Software

Testing (Non-Functional Testing) and (3) Non-Functional Testing process were all found

to be important as well as the results supports the significance of NFR testing in ASD, the

fact that non-functional testing are not taken seriously by agile team members, non-

functional testing process needs to be given focus when at the beginning stage of the

project and also the testing should only done by a capable member.

We have discovered 6 challenges that agile team members faced when conducting NFR

testing in agile environment. All the challenges were identified from this study. The

challenges are; Programmers Writes Tests, Lack of documentation throughout the process,

Lack of testing skillset between team members to conduct proper testing, Lack of

individuals assigned to conduct the testing, Requirements are too subjective,

Infrastructure overhead. The participants agreed to the fact that the do face challenges

when conducting the testing but most of the challenges faced are similar from one project

to another. The six identified challenges were all confirmed important based on several

statistical tests conducted.

We determined a total of 7 practiced that agile team member can adopt to ensure better

conducting of NFR testing. A total of 3 were new practices discovered in this study; Test

planning should be done in the early stage of development, Understanding the proper

usage of testing tools to assist with the testing process, Repeat tests multiple times to

ensure consistent results. The seven practices identified were supported by the statistical

tests done. The findings obtained will help agile team members to better understand and

59

conduct non-functional testing in their projects. It can serve as a guide for agile team

members to plan ahead and have the knowledge of what to be expected to conduct NFR

testing. The practices determined would aid agile team members to build confidence in

successfully conducting proper NFR testing in their projects.

5.4 Factors, Challenges & Practices

Table 5.1, 5.2 and 5.3 presents the results to fulfill the objectives of this study. Table 5.1

presents the identified influencing factors of conducting non-functional testing in ASD. A

total of 4 new factors were identified in this study; Incorrect individual performing the

tests, Over-reliance on manual testing, Lack of training invested for team members, Lack

of team effort. Here is the breakdown of all the factors:

1. Time Constraint. Time is always a factor in an agile environment.

Functional testing always come first compared to performance testing due

to time constraints. However, it was found that time is always provided for

security testing due to its criticality to a system.

2. Budget Constraint. The client does allocate the budget for it or developers

are told not to conduct the testing due to cost issues.

3. Failing to prioritize in the initial stage. To find out how will non-

functional testing add value to the system. It was identified as the main

factor. However, the priority depends on different aspects such as system

characteristics, project type and criticality to business.

▪ System Characteristic. This includes 1) the type of system; 2) user

experience on the system; and 3) trend analysis of the system.

▪ Project Type. This means whether it a new development of a system

or changing/fixing an existing system.

▪ Criticality to Business. This is based on client or the business

expectations and the impact to the system if non-functional testing

is conducted

60

4. Technical issues. This is when the issue lies on the system codes. In this

case, there are 3 categories.

▪ Production Incidents. If there’s a real issue during the production,

only then non-functional testing will be considered.

▪ Resource Utilization. Analyzing and conducting an assessment on

the performance of the system, then decide on the need for non-

functional testing.

▪ Environment. The testing is done in a non-suitable environment

size that does not provide accurate results.

5. Awareness of the importance. The lack of understanding on the

importance of non-functional testing from business and developers. They

have the idea where if the system does what it is supposed to do, then the

system is fine.

6. Culture of the company. Businesses and developers need to create the

habit of considering non-functional testing for a system. Agile developers

specifically should always take both functional and non-functional testing

into consideration in the development stage.

7. Experience of the members. Due to bad past experiences, the senior team

members do provide extra attention to non-functional testing. However,

the younger team members are more concerned on the functional aspects

of the system. Other than that, the testing of non-functional requirements

requires a set of skill or expertise to ensure proper testing is conducted

8. Lack of communication with customer. Lack of communication with

customer or customer representative leads to incorrect prioritization of

requirements by the developers who may lack in understanding about the

market.

9. Minimal documentation of the process. There are no templates or past

documentation to assist in new projects.

10. Incorrect individual performing the tests. In an agile project, where the

pace is fast, many tests are conducted by the developer themselves or either

someone in the same department. This can cause an issue because similar

61

mindset testing the system is highly likely to get the same result. Due to

this, a different member of the team, or better still, a tester should review

or conduct the testing phase.

11. Over-reliance on manual testing. There are many tools available to assist

in the testing process but due to insufficient knowledge, the process is

highly relied on manual testing.

12. Lack of training invested for team members. Team members lack the skill

to identify requirements or perform the testing to achieve desired results.

13. Lack of team effort. Everyone has a task provided to complete and their

focus will be individual and not realize by working in a team, knowledge

can be shared and work can be done simultaneously. For example, testing

the system as development is moving to fix errors on-the-go.

Table 5. 1 Factors Influencing Non-Functional Testing

Variable Factors

Factors influencing

Non-Functional

Testing

Time constraint.

Budget constraint.

Failing to prioritize in the initial stage.

Technical issues.

Awareness of the importance.

Culture of the company.

Experience of the members.

Lack of communication with customer.

Minimal documentation of the process.

Incorrect individual performing the tests.

Over-reliance on manual testing.

Lack of training invested for team members.

Lack of team effort.

62

Table 5.2 describes the challenges faced by agile team members when conducting non-

functional testing. All the challenges were identified from this study. The challenges are;

Programmers Writes Tests, Lack of documentation throughout the process, Lack of

testing skillset between team members to conduct proper testing, Lack of individuals

assigned to conduct the testing, Requirements are too subjective, Infrastructure

overhead.

Table 5. 2 Challenges Faced When Conducting Non-Functional Testing

Variable Challenges

Challenges Faced

When Conducting

Non-Functional

Testing

Programmers Writes Tests.

Lack of documentation throughout the process.

Lack of testing skillset between team members to conduct proper testing.

Lack of individuals assigned to conduct the testing.

Requirements are too subjective.

Infrastructure overhead.

63

Lastly, Table 5.3 determines the practices agile team members can use as a guide to ensure

that non-functional testing can be conducted smoothly in their projects. A total of 3 were

new practices discovered in this study; Test planning should be done in the early stage of

development, Understanding the proper usage of testing tools to assist with the testing

process, Repeat tests multiple times to ensure consistent results.

Table 5. 3 Practices to Conduct Better Non-Functional Testing

Variable Practices

Practices to Adopt

for Conducting

Better Non-

Functional Testing

Non-functional testing requires clear requirements elicitation.

Non-functional testing requires additional requirements documentation to help

the process and other members.

NFR and testing need to be reviewed by at least one member from different

role.

Understanding of the importance of non-functional testing is required.

Test planning should be done in the early stage of development.

Understanding the proper usage of testing tools to assist with the testing

process.

Repeat tests multiple times to ensure consistent results.

The information should provide sufficient knowledge and understanding on the

significance of NFR testing, to know what challenges to expect when conducting non-

functional testing and the methods to overcome obstacles that agile team members may

face during the course of the testing.

64

5.5 Accomplishment of Research Objectives

The main goal of this research was to identify the factors and challenges in conducting

NFR testing in ASD. We conducted a review on previous studies to identify the factors

and to discover the challenges faced to conduct the testing of NFR in ASD. The findings

will help agile team members to know what challenges to expect when conducting NFR

testing in their project.

The second objective of this study was to validate the identified factors of conducting

NFR in ASD. The factors obtained were included in the questionnaire to be validated and

at the same time, new factors were discovered from the results of the quantitative study.

After conducting several statistical tests via SPSS, all 13 factors identified were included

in the final findings.

The third objective was to propose practices that can be adopted by agile team member

when conducting non-functional testing. A total of 7 practices were determined from the

results of the questionnaire and approved acceptable after conducting statistical tests via

SPSS. These practices can act as a guide for agile team members to assist them on how to

conduct non-functional testing in their projects.

65

5.6 Implications

Theoretical implication. The findings of this study determined the factors influencing

non-functional testing in ASD namely Time constraint, Budget constraint, Failing to

prioritize in the initial stage, Technical issues, Awareness of the importance, Culture of

the company, Experience of the members, Lack of communication with customer, Minimal

documentation of the process, Incorrect individual performing the tests, Over-reliance on

manual testing, Lack of training invested for team members and Lack of team effort. Other

than that, challenges faced by agile team members when conducting non-functional testing

and practiced that can be adopted by agile team member to conduct non-functional testing

in their projects were also identified. This study has provided findings that will serve as a

guide to agile team members in understanding and implementing non-functional testing

in ASD projects. We have presented the findings from the results of the quantitative study.

Practical Implication. The process of non-functional testing is known to be a long

process which require a lot of work and for it to be conducted on an agile environment is

definitely a challenge. However, if the agile team members could follow the best practices

and have an early overview of the challenges that they may encounter, it is highly likely

that non-functional testing can be included and conducted successfully in their projects.

66

5.7 Limitations

Although the findings were made for any ASD projects around the world, the respondents

were mainly based in Malaysia. Moreover, we could not manage to evaluate the items

with actual ASD practitioners as several respondents were practitioners from different

software development methodologies and several were students with minimal work

experience in the field. Instead, a write up on ASD and non-functional testing were

provided to the respondents in order to guide them in having a clear idea of the topic.

5.8 Recommendations for Future Work

Future research should consider getting respondents specifically from an ASD team and

conducting the study across various regions. By conducting the study across various

regions, we will be able to gather more information and practices that are being used

abroad. Besides that, instead of quantitative study like the one conducted in this study, a

qualitative study such as interviews or focus groups can be conducted to identify more

factors. This will allow respondents to be more expressive and detailed in their

explanations.

67

5.9 Conclusion

ASD methodology is highly adopted by various companies due to the ability to complete

projects in a short amount of time. However, due to various factors, non-functional testing

is known to be left out by agile team members. Our aim was to identify influencing factors

of conducting NFR testing in ASD. We reviewed previous studies and gathered existing

factors, challenges and practices to be used as a bassline of our quantitative study’s

questionnaire. Other than the existing information, there were more factors, challenges

and practices identified from the data gathered from the questionnaire and run through

several statistical test via SPSS. The final findings would provide a better insight to the

significance of conducting non-functional testing in agile projects. The findings will better

prepare agile team members of the challenges that they might encounter when conducting

non-functional testing and provide them with a guide of practices to ensure proper non-

functional testing can be conducting in ASD projects. In a nutshell, the findings should

serve as a guide to conduct non-functional testing in ASD environment.

68

References

Agile Manifesto. (2014). Retrieved from http://agilemanifesto.org

Akbayrak, B. (2000). A comparison of two data collecting methods:Interviews and

questionnaires. Hacettepe Üniversitesi Egitim Fakültesi Dergisi, 18, 1-10.

Alexander, T. (2018). How to Adopt an Agile Testing Methodology. Retrieved from

http://smartbear.com/products/qa-tools/what-is-agile-testing

Ambler, S. W. (2008). Beyond functional requirements on agile projects. Dr. Dobb’s

Journal, vol. 33–10, 64–66 p. Retrieved from

https://www.researchgate.net/publication/252064264_Beyond_functional_requirements_

on_agile_projects

Antón, A. (1997). Goal Identification and Refinement in the Specification of

Information Systems. PhD Thesis, Georgia Institute of Technology. Retrieved from

https://dl.acm.org/citation.cfm?id=269264

Bahiya, M. A., & Abdelhamid, M. (2015). Enhancement Approach for NFR Analysis in

Agile Environment. International Conference on Computing, Control, Networking,

Electronics and Embedded Systems Engineering. Retrieved from

https://ieeexplore.ieee.org/document/7381407

69

Bose, S., Kurhekar, M., & Joydip, G. (2014). Agile methodology in Requirements

Engineering. SETLabs Briefings Online, February. Retrieved from

https://www.semanticscholar.org/paper/An-Empirical-Study-on-the-Requirements-

Engineering-Kassab/85ed0087b901dbc0d4171ead29f56653389cc1e0

Collins, E., & Lucena, V. (2010). Iterative Software Testing Process for Scrum and

Waterfall Projects with Open Source Testing Tools Experience. In Proceedings of the

22nd IFIP International Conference on Testing Software and Systems (ICTSS’10).

CRIM, 2010. 115-120 p. [ISBN: 978-2-89522-136-4] .Retrieved from

https://www.researchgate.net/publication/324438959_Iterative_Software_Testing_Proce

ss_for_Scrum_and_Waterfall_Projects_with_Open_Source_Testing_Tools_Experience

Crispin, L., & Gregory, J. (2009). Agile testing: A practical guide for testers and agile

teams. Pearson Education. Retrieved from http://index-of.co.uk/Software-

Testing/AGILE_TESTING_-

_A_PRACTICAL_GUIDE_FOR_TESTERS_AND_AGILE_TEAMS.pdf

Crispin, L., & Gregory, J. (2014). More Agile Testing: Learning Journeys for the Whole

Team. Pearson Education. Retrieved from

http://ptgmedia.pearsoncmg.com/images/9780321967053/samplepages/9780321967053.

pdf

Cristina, R. C., Sabrina, M., & Daniela, S. C. (2016). Agile Team Members Perceptions

on Non-functional Testing: Influencing Factors from an Empirical Study. 11th

International Conference on Availability, Reliability and Security. Retrieved from

https://ieeexplore.ieee.org/abstract/document/7784622

70

Davies, D., & Doodd, J. (2002). Qualitative research and question of riger. Qualitative

Health research, 12(2), 279-289. Retrieved from

http://www.dspace.up.ac.za/bitstream/handle/2263/28048/02chapter3.pdf?sequence=3

Davis, A. (1993). Software Requirements: Objects, Functions and States. Prentice Hall.

Retrieved from https://dl.acm.org/citation.cfm?id=113586

DeCoster, J. (1998). Overview of factor analysis. Retrieved from http://stat-

help.com/factor.pdf

Denisse, M. (2018). Traditional vs. Agile Software Development Method: Which One is

Right for Your Project? Retrieved from https://dzone.com/articles/traditional-vs-agile-

software-development-method-w

Dybå, T., & Dingsøyr, T. (2009). What Do We Know about Agile Software

Development? Software, IEEE. 26. 6 - 9. 10.1109/MS.2009.145. Retrieved from

https://ieeexplore.ieee.org/document/5222784

Edward, K., & Susannah, F. (1995). Software Testing in the Real World: Improving the

Process. Addison-Wesley, Reading, MA, USA. Retrieved from

https://dl.acm.org/citation.cfm?id=217720

Eliane, F. C. (2012). Software test automation practices in agile development

environment: An industry experience report. In: Proceedings of the 7th International

Workshop on Automation of Software Test, pp. 57–63. Retrieved from

https://dl.acm.org/citation.cfm?id=2663620

71

Faisandier, A. (2012). Systems opportunities and requirements, vol. 2. Engineering and

Architecting Multidisciplinary Systems. Sinergy’Com, France.

Glenn, V. (2005). A Simple Model of Agile Software Practices - or - Extreme

Programming Annealed, in Object-Oriented Programming, Systems, Languages, and

Applications, New York, pp. 539-545. Retrieved from

https://dl.acm.org/citation.cfm?id=1094854

Glinz, M. (2005). Rethinking the notion of NFR. Proceedings of the Third World

Congress for Software Quality, 55–64. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.470.5284&rep=rep1&type=pd

f

Hanan, H., Rocky, S., Jianwei, N., & Travis, D. (2017). Rethinking Security

Requirements in RE Research. Retrieved from

https://pdfs.semanticscholar.org/8aae/a45a11a90b6bb4158ae61a509258bcf5688b.pdf

Huang, L., & Boehm, B. (2006). How Much Software Quality Investment Is Enough: A

Value-Based Approach. IEEE Software, Vol. 23(5), pp. 88-95, doi:

10.1109/MS.2006.127. Retrieved from https://dl.acm.org/citation.cfm?id=1159149

Hutcheson G., & Sofroniou N. (1999). The multivariate social scientist: introductory

statistics using generalized linear models. London: Sage Publication.

IEEE. Guide to the Software Engineering Body of Knowledge - IEEE SWEBOK, 2004.

Retrieved from:

https://pdfs.semanticscholar.org/9151/665c0b7f49aaf260d18d4177c685638a0b8e.pdf

72

IEEE. (1990). Standard Glossary of Software Engineering Terminology. IEEE Standard

610.12-1990. Retrieved from https://ieeexplore.ieee.org/document/159342

Itti, H., & Rajender, S. C. (2015). Software Test Process, Testing Types and Techniques.

International Journal of Computer Applications (0975 – 8887) Volume 111 – No 13,

February. Retrieved from

https://pdfs.semanticscholar.org/0fbe/1b5515e747025d950658fbc039e98b29b801.pdf

Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The Unified Software Development

Process. Retrieved from https://dl.acm.org/citation.cfm?id=309683

Jai, N. G., & Mehtre, B. M. (2015). Vulnerability Assessment & Penetration Testing as a

Cyber Defence Technology. Retrieved from

https://www.sciencedirect.com/science/article/pii/S1877050915019870

Kaiser, H. F. (1974). An Index of Factorial Simplicity. PSYCHOMETRIK, 39(1), 31–

36. Retrieved from

https://pdfs.semanticscholar.org/f4f5/31ba422264ec4ff7fc09db8680f8299fc706.pdf

Karuturi, S., & Malle, G. M. (2017). Research on Software Testing Techniques and

Software Automation Testing Tools. International Conference on Energy,

Communication, Data Analytics and Soft Computing (ICECDS). Retrieved from

https://ieeexplore.ieee.org/document/8389562

Kiran, K., & Arvind, K., (2013). Impact of NFR on Requirements Evolution. Sixth

International Conference on Emerging Trends in Engineering and Technology.

Retrieved from https://dl.acm.org/citation.cfm?id=2606288

73

Klein, P. G. (2008). The Make-or-Buy Decisions: Lessons from Empirical Studies.

Handbook of New Institutional Economics, pp 435-464. Retrived from

https://pdfs.semanticscholar.org/2253/f1183e3ec869a5f839d6e6d6fdfa2e6c4b98.pdf?_g

a=2.16296310.1941105328.1568642655-1969972726.1567949410

Kothari, C. R. (2004). Research Methology: Methods and Techniques (2nd ed.). India:

New Age International.

Kotonya, G., & Sommerville, I. (1998). Requirements Engineering: Processes and

Techniques. Retrieved from https://dl.acm.org/citation.cfm?id=552009

Lawrence, B., Wiegers, K. & Ebert, C. (2001). The top risk of requirements

engineering. Software, IEEE, vol. 18–6, 62–63 p. Retrieved from

https://ieeexplore.ieee.org/abstract/document/965804

Leedy, P. D. (1993). Practical research: planning and design. New Jersey: Prentice-Hall.

Mabrok, M. A., Efatmaneshnik, M., & Ryan, M. J. (2015). Including NFR in the

Axiomatic Design Process. IEEE Systems Journal, 1–11. Retrieved from

https://www.researchgate.net/publication/282331926_Including_Non-

Functional_Requirements_in_the_Axiomatic_Design_Process

Marizia D. et. Al. (2010). An Investigation into the Notion of NFR. SAC’10, Sierre,

Switzerland. Retrieved from

https://www.researchgate.net/publication/261073604_On_non-

functional_requirements_A_survey

74

Martens, N. (2011). The impact of NFR on project success. Retrieved from

http://www.cs.uu.nl/education/scripties/pdf.php?SID=INF/SCR-2010-038

Martin, G. (2007). On NFR. 15th IEEE International Requirements Engineering

Conference, pages 21–26, 15-19 Oct. Retrieved from

https://ieeexplore.ieee.org/document/4384163

Meier, J., Farre, C., Bansode, P., Barber, S., & Rea, D. (2007). Performance testing

guidance for web applications: patterns & practices. Microsoft press. Retrieved from

https://dl.acm.org/citation.cfm?id=1461439

Mohammad, K. (2014). An Empirical Study on the Requirements Engineering Practices

for Agile Software Development. 40th Euromicro Conference on Software Engineering

and Advanced Applications. Retrieved from

https://ieeexplore.ieee.org/abstract/document/6928819

Mylopoulos, J., Chung, L., & Nixon, B. (1992). Representing and Using Nonfunctional

Requirements: A Process- Oriented Approach. IEEE Transactions on Software

Engineering 18, 6 (June). 483-497. Retrieved from

https://ieeexplore.ieee.org/document/142871

Ncube, C. (2000). A Requirements Engineering Method for COTS-Based Systems

Development. PhD Thesis, City University London. Retrieved from

https://ieeexplore.ieee.org/document/142871

Nerur, S., & Balijepally, V. (2007). Theoretical Reflections on Agile Development

Methodologies. Comm. ACM, vol. 50, no. 3, pp.79–83. Retrieved from

https://dl.acm.org/citation.cfm?id=1226739

75

Neuman, W. L. (2006) Social Research Methods: Qualitative and Quantitative

Approaches 6th Edition, Pearson International Edition, USA.

Pamela, Z. (1997). Classification of research efforts in requirements engineering. ACM

Comput. Surv., 29(4):315–321. https://dl.acm.org/citation.cfm?id=267581

Phellas, C., Bloch, A. & Seale. (2011). Structured methods: Interviews, questionnaires

and observation Researching Society and Culture. 3 ed. London.

Professional QA. (2018). Retrieved from http://www.professionalqa.com/traditional-

testing-vs-agile-testing

Raimundas, M. (2005). Process Support for Requirements Engineering A Requirements

Engineering Tool Evaluation Approach. PhD thesis, NTNU. Doctoral theses at

NTNU:142. Retrieved from https://www.semanticscholar.org/paper/Process-Support-

for-Requirements-Engineering%3A-A-

Matulevicius/115d8fc79b12e840da36ea7b57e29fc025937c3f

Rijwan, K., Akhilesh, K. S. & Dilkeshwar, P. (2016). Agile Approach for Software

Testing Process. Proceedings of the SMART -2016, IEEE Conference ID: 39669. 5th

International Conference on System Modeling & Advancement in Research Trends,

25th_27'h November. Retrieved from https://ieeexplore.ieee.org/document/7894479

Robertson, S., & Robertson, J. (1999). Mastering the Requirements Process. ACM Press.

Retrieved from https://dl.acm.org/citation.cfm?id=312381

76

Sean, I. (2001). Challenges of Requirements Elicitation. Louis University of Missouri–

St. Louis. [Online document]. Retrieved from

https://www.umsl.edu/~sauterv/analysis/Fall2010Papers/Isserman/

Siron, R., Tasripan, M. A. & Majid, M. Y. (2013). A Study of Quality of Working Life

amongst Managers in Malaysian Industrial Companies. Journal of Business and

Economics, ISSN 2155-7950, USA, Volume 4, No. 7, pp. 561-570. Retrieved from

http://www.academicstar.us/UploadFile/Picture/2014-6/201461495752684.pdf

Sommerville, I. (2010). Software engineering — 9th ed. Retrieved from

https://dl.acm.org/citation.cfm?id=1841764

Standish Group. (2014). The Chaos Report. Retrieved from

https://www.projectsmart.co.uk/white-papers/chaos-report.pdf

Tavakol, M. & Dennick, R. (2011). Making sense of Cronbach’s alpha. International

Journal of Medical Education. Retrieved from

https://www.ijme.net/archive/2/cronbachs-alpha.pdf

Verndon, D., & McGraw, G. (2004). Risk Analysis in software Design. IEEE Security

and Privacy.2,4.32-37 (July/August 2004). Retrieved from

https://ieeexplore.ieee.org/document/1324606

Vikas, B., & Ravi, P. G. (2012). On NFR: A Survey. IEEE Students’ Conference on

Electrical, Electronics and Computer Science. Retrieved from

https://ieeexplore.ieee.org/abstract/document/6184810

77

Ville, T. H., Casper, L., Daniela, D., & Maria, P. (2015). Mapping Study on

Requirements Engineering in Agile Software Development. 41st Euromicro Conference

on Software Engineering and Advanced Applications. Retrieved from

https://ieeexplore.ieee.org/document/7302452

Warren, C. A. (2011). The Need for Functional Security Testing. Retrieved from

https://pdfs.semanticscholar.org/f0ab/68c7d4be4adb0adc19bb5879b9772c3f200d.pdf

Westfall, L. (2005). Software requirements engineering: what, why, who, when, and

how. Software Quality Professional 7.4: 17. Retrieved from

https://www.researchgate.net/publication/293118075_What_Why_Who_When_and_Ho

w_of_Software_Requirements

Wiegers, K. (2003). Software Requirements, 2nd edition. Microsoft Press. Retrieved

from https://dl.acm.org/citation.cfm?id=862054

78

APPENDICES

APPENDIX A: QUESTIONNAIRE

Part 1: Demographic Questions

79

Part 2: Questionnaire

80

29. In your opinion, what are the factors that influence non-functional testing in agile environment?
(Enter the factors followed by a number between 1-5 indicating how influential the factor is. 5 being most influential) Example: Not equipped with skill set = 4; Lack of team

effort = 5;

30. What were the challenges faced when conducting non-functional testing?

(Enter the challenges followed by a number between 1-5 indicating how challenging it is. 5 being most challenging) Example: Conducting testing with no

prior training = 4; Lack of manpower to perform complete testing = 5;

31. How did your team you/your team overcome the challenges stated above?
(Enter the practices followed by a number between 1-5 indicating how effective the practice is. 5 being most effective) Example: Learned the right tools to

assist with the testing = 4; Created a guideline to assist with the testing = 5;

81

APPENDIX B: EXPERT REVIEW

 Expert 1 Expert 2 Expert 3 Expert 4 Revised

Agile Software Development Methodology

1. I understand there are various types of software

development methodologies available.

 I understand there are various types of

software development methodologies

available.

2. In software development process, agile

methodology is widely used in projects.

 In a software development process, agile

methodology is widely used in projects.

3. I prefer agile methodology compared to the

traditional methodology.

 Looks not

related

 I prefer agile methodology compared to the

traditional methodology.

Software Testing (Non-Functional Testing)

4 It is important to conduct software testing on

every project.

 It is important to conduct software testing on

every project.

5. Non-functional testing is more important than

Functional testing.

 Non-functional testing is more important than

Functional testing.

6. Non-functional testing is not taken seriously by

testers.

 Non-functional testing is not taken seriously

by testers.

7. Non-functional testing is required in all projects. Non-functional testing is required in all

projects.
8. If provided a choice, I would choose to conduct

non-functional testing in all projects.

 If provided a choice, I would choose to

conduct non-functional testing in all projects.

82

Non-Functional Testing Process

9. Non-functional testing process is started

when the project begins.

 Non-functional testing process is

started when the project begins.

10 Non-functional testing process should

start as soon as a project begins.

 Non-functional testing process should

start as soon as a project begins.

11. Non-functional testing can be done by

anyone in the team.

Revise Revise Non-functional testing is done by

anyone in the team.

12. Non-functional testing should only be

done by a specialist.

 Non-functional testing should only be

done by a specialist.

Factors influencing Non-Functional Testing

13. Time constraint. Time constraint.

14. Budget constraint. Budget constraint.

15. Failing to prioritize in the initial stage. Failing to prioritize in the initial stage.

16. Technical issues. Technical issues.

17. Awareness of the importance. Awareness of the importance.

18. Culture of the company. Culture of the company.

19. Experience of the members. Experience of the members.

20. Lack of communication with customer. Lack of communication with customer.

21. Minimal documentation of the process. Minimal documentation of the process.

22. In your opinion, what are the factors this? Define ‘this’ Define ‘this’ In your opinion, what are the factors that

influence non-functional testing in agile

environment?

83

Challenges Faced When Conducting Non-Functional Testing

23. I face various challenges in conducting non-

functional testing.

 I face various challenges in conducting non-

functional testing.

24. I am able to overcome the challenges faced. I am able to overcome the challenges faced.

25. What were the challenges faced when conducting

non-functional testing and how did you/your team

overcome them?

Split into 2

questions

Split into 2

questions

 Split into 2

questions

What were the challenges faced when

conducting non-functional testing?

 26. Challenges faced in every project are similar. Challenges faced in every project are similar.

Practices to Adopt for Conducting Better Non-Functional Testing

 27. Non-functional testing requires clear

requirements elicitation.

 Non-functional testing requires clear

requirements elicitation.

 28. Non-functional testing requires additional

requirements documentation to help the process

and other members.

 Non-functional testing requires additional

requirements documentation to help the

process and other members.

 29. NFR and testing need to be reviewed by at least

one member from different role.

 NFR and testing need to be reviewed by at

least one member from different role.

 30. Understanding of the importance of non-

functional testing is required.

 Understanding of the importance of non-

functional testing is required.

31. What were the challenges faced when conducting

non-functional testing and how did you/your team

overcome them?

Split into 2

questions

Split into 2

questions

 Split into 2

questions

How did your team you/your team overcome

the challenges faced when conducting non-

functional testing?

